scholarly journals Magnetic Properties of Fe, Co and Ni Based Nanopowders Produced by Chemical-Metallurgy Method

2021 ◽  
Vol 23 (1) ◽  
pp. 3
Author(s):  
Tien Hiep Nguyen ◽  
Y. Konyukhov ◽  
Nguyen Van Minh ◽  
D. Y. Karpenkov ◽  
V. V. Levina ◽  
...  

This research study describes the magnetic properties of Fe, Co and Ni metallic nanopowders (NPs) and their ternary nanocomposites (NCs), which can be used as fillers in radio-wave absorbing composite materials and coatings, as well as for magnetic protection of banknotes and security paper. The nanopowders were prepared by the chemical metallurgy method. The desired properties of Fe, Co and Ni NPs and NCs were achieved by co-precipitation, the addition of surfactants and changes in reduction temperature and time parameters. Magnetic measurements showed that all samples of pure metal NPs are semi-hard magnetic materials. The added surfactants have distinct effects on the dimensional and magnetic characteristics of Fe, Co and Ni NPs. Ni–Co–Fe NCs are also mainly semi-hard magnetic materials. Fine-tuning of their composition and chemical reduction temperatures allows controlling the values of Ms and Hc in large ranges from 49 to 197 A·m2/kg and from 4.7 to 60.6 kA/m, respectively.

2019 ◽  
Vol 15 (1) ◽  
pp. 21-27
Author(s):  
E. A. Volegova ◽  
T. I. Maslova ◽  
V. O. Vas’kovskiy ◽  
A. S. Volegov

Introduction The introduction indicates the need for the use of permanent magnets in various technology fields. The necessity of measuring the limit magnetic hysteresis loop for the correct calculation of magnetic system parameters is considered. The main sources of error when measuring boundary hysteresis loops are given. The practical impossibility of verifying blocks of magnetic measuring systems element-by-element is noted. This paper is devoted to the development of reference materials (RMs) for the magnetic properties of hard magnetic materials based on Nd2Fe14B, a highly anisotropic intermetallic compound.Materials and measuring methods Nd-Fe-B permanent magnets were selected as the material for developing the RMs. RM certified values were established using a CYCLE‑3 apparatus included in the GET 198‑2017 State Primary Measurement Standard for units of magnetic loss power, magnetic induction of constant magnetic field in a range from 0.1 to 2.5 T and magnetic flux in a range from 1·10–5 to 3·10–2 Wb.Results and its discussion Based on the experimentally obtained boundary hysteresis loops, the magnetic characteristics were evaluated, the interval of permitted certified values was set, the measurement result uncertainty of certified values was estimated, the RM validity period was established and the first RM batch was released.Conclusion On the basis of conducted studies, the RM type for magnetic properties of NdFeB alloy-based hard magnetic materials was approved (MS NdFeB set). The developed RM set was registered under the numbers GSO 11059–2018 / GSO 11062–2018 in the State RM Register of the Russian Federation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 341
Author(s):  
Tien Hiep Nguyen ◽  
Gopalu Karunakaran ◽  
Yu.V. Konyukhov ◽  
Nguyen Van Minh ◽  
D.Yu. Karpenkov ◽  
...  

This paper presents the synthesis of Fe–Co–Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe–Co–Ni nanocomposites. The initial hydroxides of Fe–Co–Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300–500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6–192.5 Am2/kg, Mr = 0.4–39.7 Am2/kg, Mr/Ms = 0.02–0.32, and HcM = 4.72–60.68 kA/m by regulating the composition and reduction temperature of the Fe–Co–Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe–Co–Ni ternary system phase content and magnetic properties was evaluated. The Fe–Co–Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications.


1971 ◽  
Vol 14 (11) ◽  
pp. 1726-1728 ◽  
Author(s):  
M. A. Artemova ◽  
O. Yu. Bagalei ◽  
M. I. Grobovitskii ◽  
V. I. Zingerman

2020 ◽  
Vol 65 (1-2) ◽  
pp. 11-17
Author(s):  
R. Hirian ◽  
◽  
P. Palade ◽  
‪A. Ciorîță ◽  
S. Macavei ◽  
...  

"The Co11Zr2 magnetic phase was obtained by a combination of melting, mechanical milling and high temperature annealing. The structure and magnetic properties of the obtained material were investigated. Even though the samples possessed low coercivity, it was shown that they possess uniaxial anisotropy. Keywords: hard magnetic materials, magnetic anisotropy, mechanical milling, high temperature annealing "


The magnetic properties of alloy systems have assumed increasing importance in recent years. In view of the extreme complexity of the different magnetic characteristics of these alloys, it is evident that a consideration of the more fundamental properties constitute the essential starting point for a systematic investigation. Whilst the behaviour in low magnetic fields may depend largely upon thermal and mechanical treatment, the intensity is known to show less variation, particularly if sufficiently high fields are employed. In the case of many so-called “hard” magnetic materials, however, some thousands of gauss are necessary to produce complete alinement of the elementary domains. If, further, only small quantities are available, the magnetic field required to overcome the shape factor and saturate the material makes the use of an electromagnet essential. The intensity must be measured over a range of temperatures up to the Curie point, so that the variation in the moment of the elementary magnets accompanying a change in structure can be followed. None of the existing methods appears suitable for rapid measurements on a large number of magnetic materials. A new method has been developed capable of measurements on a few cubic millimetres of substance to a high degree of accuracy at any temperature, and it seemed worth while to deal with it in a separate communication.


2017 ◽  
Vol 17 ◽  
pp. 1-9
Author(s):  
P. Annie Vinosha ◽  
L. Ansel Mely ◽  
J. Emima Jeronsia ◽  
F. Heartlin Monica ◽  
K. Raja ◽  
...  

Spinel zinc ferrite (ZnFe2O4) nanoparticles have engrossed immense attention due to its unusual amalgamation of its properties especially the magnetic properties and these properties are catered as fitting candidates in the field of electronics. Nanostructured spinel zinc ferrite particles were synthesized using scalable co-precipitation technique. The morphology, particle size and reaction pace of the nanoparticles (NPs) were fine tuned by eco-friendly technique. These NPs were characterized by UV-Visible spectroscopy (UV-Vis), photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Transmission electron microscopy (TEM), vibrating sample magnetometer ((VSM) and Dielectric studies. The required profiles were confirmed by XRD and FTIR spectra, UV-Vis, PL spectral studies. Further these measurements divulge the significance of optical properties and the spectral parameters are used to appraise the optical constants required for fabrication. Transmission electron microscopy eventually discloses the morphological analysis of the synthesized ZnFe2O4 nanoparticle as 15 nm within the scaling limitations. Using, VSM, the magnetic behaviour of the material have been determined as a function of magnetic field at ambient temperature; the magnetic measurements well-establishes the magnetic property and disclosed to have weak ferromagnetic behaviour as the crystallite size decreases. The A.C. conductivity measurements and dielectric studies were done as a functional dependence of frequency and temperature on synthesized nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document