hard magnetic materials
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pierfrancesco Maltoni ◽  
Sergey A. Ivanov ◽  
Gianni Barucca ◽  
Gaspare Varvaro ◽  
Davide Peddis ◽  
...  

AbstractThe magnetic properties of SrFe12O19 (SFO) hard hexaferrites are governed by the complex relation to its microstructure, determining their relevance for permanent magnets´ applications. A set of SFO nanoparticles obtained by sol–gel self-combustion synthesis was selected for an in-depth structural X-Rays powder diffraction (XRPD) characterization by means of G(L) line-profile analysis. The obtained crystallites´ size distribution reveal a clear dependence of the size along the [001] direction on the synthesis approach, resulting in the formation of platelet-like crystallites. In addition, the size of the SFO nanoparticles was determined by transmission electron microscopy (TEM) analysis and the average number of crystallites within a particle was estimated. These results have been evaluated to illustrate the formation of single-domain state below a critical value, and the activation volume was derived from time dependent magnetization measurements, aiming to clarify the reversal magnetization process of hard magnetic materials.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7357
Author(s):  
Anna Kuś ◽  
Wirginia Pilarczyk ◽  
Aleksandra Małachowska ◽  
Andrzej Ambroziak ◽  
Piotr Gębara

Properties of Co-based alloys with high Glass Forming Ability (GFA) in the form of powder are still not widely known. However, powders of high GFA alloys are often used for the development of bulk metallic glasses by additive manufacturing. In this work Co47.6B21.9Fe20.4Si5.1Nb5% at. and Co42B26.5Fe20Ta5.5Si5Cu1% at. were developed by gas-atomization. Obtained powders in size 50–80 µm were annealed at Tg and Tx of each alloy. Then SEM observation, EDS analyses, differential thermal analysis, X-ray diffraction, nanoindentation, Mössbauer, and magnetic properties research was carried out for as-atomized and annealed states. The gas atomization method proved to be an efficient method for manufacturing Co-based metallic glasses. The obtained powder particles were spherical and chemically homogeneous. Annealing resulted in an increase of mechanical properties such as hardness and the elastic module of Co47.6B21.9Fe20.4Si5.1Nb5% at and Co42B26.5Fe20Ta5.5Si5Cu1%, which was caused by crystallization. The magnetic study shows that Co47.6B21.9Fe20.4Si5.1Nb5 and Co42B26.5Fe20Ta5.5Si5Cu1 are soft magnetic and semi-hard magnetic materials, respectively.


2021 ◽  
Author(s):  
Pierfrancesco Maltoni ◽  
Sergey Alexander Ivanov ◽  
Gianni Barucca ◽  
Gaspare Varvaro ◽  
Davide Peddis ◽  
...  

Abstract The magnetic properties of SrFe12O19 (SFO) hard hexaferrites are governed by the complex relation to its microstructure, determining their relevance for permanent magnets´ applications. A set of SFO nanoparticles obtained by sol-gel self-combustion synthesis was selected for an in-depth structural X-Rays powder diffraction (XRPD) characterization by means of G(L) line-profile analysis. The obtained crystallites´ size distribution reveal a clear dependence of the size along the [001] direction on the synthesis approach, resulting in the formation of platelet-like crystallites. In addition, the size of the SFO nanoparticles was determined by transmission electron microscopy (TEM) analysis and the average number of crystallites within a particle was estimated. These results have been evaluated to illustrate the formation of single-domain state below a critical value, and the activation volume was derived from time dependent magnetization measurements, aiming to clarify the reversal magnetization process of hard magnetic materials.


2021 ◽  
Vol 23 (1) ◽  
pp. 3
Author(s):  
Tien Hiep Nguyen ◽  
Y. Konyukhov ◽  
Nguyen Van Minh ◽  
D. Y. Karpenkov ◽  
V. V. Levina ◽  
...  

This research study describes the magnetic properties of Fe, Co and Ni metallic nanopowders (NPs) and their ternary nanocomposites (NCs), which can be used as fillers in radio-wave absorbing composite materials and coatings, as well as for magnetic protection of banknotes and security paper. The nanopowders were prepared by the chemical metallurgy method. The desired properties of Fe, Co and Ni NPs and NCs were achieved by co-precipitation, the addition of surfactants and changes in reduction temperature and time parameters. Magnetic measurements showed that all samples of pure metal NPs are semi-hard magnetic materials. The added surfactants have distinct effects on the dimensional and magnetic characteristics of Fe, Co and Ni NPs. Ni–Co–Fe NCs are also mainly semi-hard magnetic materials. Fine-tuning of their composition and chemical reduction temperatures allows controlling the values of Ms and Hc in large ranges from 49 to 197 A·m2/kg and from 4.7 to 60.6 kA/m, respectively.


2021 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Alessandro Giuseppe D’Aloia ◽  
Antonio Di Francesco ◽  
Valerio De Santis

In this study, a novel computational method capable of reproducing hysteresis loops of hard magnetic materials is proposed. It is conceptually based on the classical Preisach model but has a completely different approach in the modeling of the hysteron effect. Indeed, the change in magnetization caused by a single hysteron is compared here to the change in velocity of two disk-shaped solids elastically colliding with each other rather than the effect of ideal geometrical entities giving rise to so-called Barkhausen jumps. This allowed us to obtain a simple differential formulation for the global magnetization equation with a significant improvement in terms of computational performance. A sensitivity analysis on the parameters of the proposed method has indeed shown the capability to model a large class of hysteresis loops. Moreover, the proposed method permits modeling of the temperature effect on magnetization of neodymium magnets, which is a key point for the design of electrical machines. Therefore, application of the proposed method to the hysteresis loop of a real NdFeB magnet has been proven to be very accurate and efficient for a large temperature range.


2020 ◽  
Vol 65 (1-2) ◽  
pp. 11-17
Author(s):  
R. Hirian ◽  
◽  
P. Palade ◽  
‪A. Ciorîță ◽  
S. Macavei ◽  
...  

"The Co11Zr2 magnetic phase was obtained by a combination of melting, mechanical milling and high temperature annealing. The structure and magnetic properties of the obtained material were investigated. Even though the samples possessed low coercivity, it was shown that they possess uniaxial anisotropy. Keywords: hard magnetic materials, magnetic anisotropy, mechanical milling, high temperature annealing "


2020 ◽  
Vol 75 (6) ◽  
pp. 334-343 ◽  
Author(s):  
Fabrice Bernier ◽  
Maged Ibrahim ◽  
Mihaela Mihai ◽  
Yannig Thomas ◽  
Jean-Michel Lamarre

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5549
Author(s):  
Sofia Kontos ◽  
Anar Ibrayeva ◽  
Jennifer Leijon ◽  
Gustav Mörée ◽  
Anna E. Frost ◽  
...  

In this paper, hard magnetic materials for future use in electrical machines are discussed. Commercialized permanent magnets used today are presented and new magnets are reviewed shortly. Specifically, the magnetic MnAl compound is investigated as a potential material for future generator designs. Experimental results of synthesized MnAl, carbon-doped MnAl and calculated values for MnAl are compared regarding their energy products. The results show that the experimental energy products are far from the theoretically calculated values with ideal conditions due to microstructure-related reasons. The performance of MnAl in a future permanent magnet (PM) generator is investigated with COMSOL, assuming ideal conditions. Simplifications, such as using an ideal hysteresis loop based on measured and calculated saturation magnetization values were done for the COMSOL simulation. The results are compared to those for a ferrite magnet and an NdFeB magnet. For an ideal MnAl hysteresis loop, it would be possible to replace ferrite with MnAl, with a reduced weight compared to ferrite. In conclusion, future work for simulations with assumptions and results closer to reality is suggested.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 518 ◽  
Author(s):  
Natalia B. Kolchugina ◽  
Mark V. Zheleznyi ◽  
Aleksandr G. Savchenko ◽  
Vladimir P. Menushenkov ◽  
Gennadii S. Burkhanov ◽  
...  

The Ce2Fe14B intermetallic, like Nd2Fe14B, has the tetragonal Nd2Fe14B-type structure (space group P42/mnm), in which Ce ions have a mixed-valence state characterized by the coexistence of trivalent 4f1 and tetravalent 4f0 electron states. Despite the fact that the saturation magnetization, magnetic anisotropy field, and Curie temperature of the Ce2Fe14B intermetallic are substantially lower than those of Nd2Fe14B and Pr2Fe14B, Ce2Fe14B retains the capacity of being able to be used in the manufacturing of rare-earth permanent magnets. Moreover, at low temperatures, the anisotropy field of Се2Fe14B is higher than that of Nd2Fe14B, and Се2Fe14B does not undergo the spin-reorientation transition. In this respect, studies of (Nd, Ce)-Fe-B alloys, which are intended for the improvement of the service characteristics-to-cost ratio, are very relevant. A model and algorithm for calculating the hysteresis loops of uniaxial hard magnetic materials with allowance for the K1 and K2 (K2 > 0 and K1 > 0 and K1 < 0) magnetic anisotropy constants were developed and allowed us to obtain data on their effect on the parameters of hysteresis loops for a wide temperature range (0–300 K). The simulation and analysis of hysteresis loops of the quasi-ternary intermetallics (Nd1−хСех)2Fe14B (х = 0–1) was performed. Results of the simulation indicate that the alloying of the Nd2Fe14B intermetallic with Ce to x = 0.94 (1) does not completely eliminate the negative effect of spin-reorientation phase transition on the residual magnetization of the (Nd1−хCeх)2Fe14B intermetallic and (2) slightly decreases the slope of magnetization reversal curve.


Sign in / Sign up

Export Citation Format

Share Document