scholarly journals Biosynthesis and distribution of leucocyte elastase inhibitor. Production of recombinant inhibitor.

1996 ◽  
Vol 43 (3) ◽  
pp. 497-501
Author(s):  
A Kasza ◽  
R Korpula-Mastalerz ◽  
S Rose-John ◽  
A Dubin

The horse leucocyte elastase inhibitor (HLEI), present in neutrophils, monocytes and bone marrow cells, is apparently a cytoplasmic protein which is not released from cells even in response to stimulation with lipopolysaccharide, phorbol ester, tumour necrosis factor alpha, interleukin-1 or elastin degradation products. Although no expression of the inhibitor was detected in neutrophils, both monocytes and bone marrow cells were efficient in its synthesis. Using a new expression vector pREST5d, recombinant inhibitor was produced in a large quantity in a soluble form, with a yield of 88 mg per 10 litres of E. coli culture. A two-step purification procedure, consisting of ion-exchange chromatography and gel filtration, yielded 36 mg of the recombinant inhibitor of a purity higher than 95%, as judged by SDS/PAGE. The recombinant protein had physicochemical and kinetic properties indistinguishable from those of the natural one, including irreversible elastase inhibition with an association rate constant kass > 10(7) M-1s-1. Both proteins were eliminated from rat circulation at the same ratio, and within the first 20 min 70% of the protein was removed. Such a short half-life in the circulation suggests that local delivery of HLEI directly to lungs in the form of aerosol could be a more efficient therapeutic approach than its intravenous injection.

2020 ◽  
Vol 21 (11) ◽  
pp. 3774
Author(s):  
Giuliana Ascone ◽  
Yixuan Cao ◽  
Ineke D.C. Jansen ◽  
Irene Di Ceglie ◽  
Martijn H.J. van den Bosch ◽  
...  

Recently, it was shown that interleukin-1β (IL-1β) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn−/−) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C−), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31− Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn−/− mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn−/− mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn−/− cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn−/− osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1923-1928 ◽  
Author(s):  
BD Chen

Abstract Earlier studies suggested the existence of a blood-bone marrow barrier that significantly inhibits the transfer of plasma macrophage colony- stimulating factor (M-CSF) to responsive hematopoietic cells in vivo as indicated by its failure to induce a receptor downregulation in bone marrow cells. In this study, the effect of recombinant human interleukin-1 (rhuIL-1) was investigated. In vivo administration of rhuIL-1, either intraperitoneally (IP) or intravenously (IV), induced a rapid transient loss of M-CSF receptor binding activity in bone marrow cells, with a nadir occurring between 2 to 4 hours while loss of M-CSF receptors by cells in the peritoneal cavity occurred only in animals receiving rhuIL-1 via IP administration. The loss of M-CSF receptor activity after rhuIL-1 treatment was correlated with an elevated level of circulating M-CSF. However, the loss of M-CSF receptors in marrow cells was prevented by dexamethasone (Dex) treatment before rhuIL-1 administration. The fact that Dex treatment also reduced the level of circulating M-CSF after rhuIL-1 administration suggests that the inhibitory effects of IL-1 are mediated through locally produced M-CSF. Administration of rhuM-CSF at higher doses, either IV or IP, also induced a loss of M-CSF receptor of lesser degree in the marrow cells. However, the loss of M-CSF receptors by the peritoneal cells was induced only in mice receiving rhuM-CSF through IP administration. Taken together, these results indicate the existence of a unidirectional barrier that prevents the transfer of blood M-CSF and IL- 1 to peritoneal cavity but not vice versa.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 639-646
Author(s):  
J Eastgate ◽  
J Moreb ◽  
HS Nick ◽  
K Suzuki ◽  
N Taniguchi ◽  
...  

Pretreatment with interleukin-1 (IL-1) has been shown to protect mice from the myelotoxicity associated with irradiation via a mechanism potentially mediated through the induction of the antioxidant enzyme manganese superoxide dismutase (MnSOD). In this study, we have compared the ability of IL-1 to induce MnSOD mRNA in murine bone marrow cells and human cell lines with its ability to protect these cells against the damaging effects of ionizing radiation. Bone marrow cells obtained from mice 6 hours after a single injection of IL-1 demonstrate a dose- dependent increase in the expression of MnSOD RNA. In this same study, IL-1 was also shown to be radioprotective when given to mice 20 hours before lethal irradiation. Similarly, in vitro treatment with IL-1 of bone marrow cells isolated from 5-fluorouracil-treated mice results in elevated levels of MnSOD RNA. Pretreatment with IL-1 also protected bone marrow long-term culture-initiating cells capable of reconstituting irradiated stromal cultures from an irradiation insult. Furthermore, IL-1-treated human bone marrow cells display both elevated MnSOD RNA and protein levels when compared with media controls. The human A375 melanoma, A549 adenocarcinoma, and factor-dependent TF-1 leukemic cell lines demonstrate low basal MnSOD RNA levels that increase following treatment with IL-1. For the A375 cells, this correlates with increased MnSOD protein expression and radioprotection by IL-1 using a colony assay. In contrast, the chronic myelogenous leukemic cell line, K562, displays a high basal MnSOD RNA level, and this RNA expression is not further increased by IL-1 treatment. In addition, these cells are comparatively radioresistant and are not further protected by IL-1 treatment. Finally, the Mo-7 cell line displays a low basal level of MnSOD RNA that correlates with a high sensitivity to irradiation and IL-1 pretreatment has no effect on MnSOD RNA levels. Our results indicate that increased radioprotection by IL-1 correlates with the induction of the antioxidant enzyme MnSOD and this induction may be an important factor in IL-1 radioprotection.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1923-1928
Author(s):  
BD Chen

Earlier studies suggested the existence of a blood-bone marrow barrier that significantly inhibits the transfer of plasma macrophage colony- stimulating factor (M-CSF) to responsive hematopoietic cells in vivo as indicated by its failure to induce a receptor downregulation in bone marrow cells. In this study, the effect of recombinant human interleukin-1 (rhuIL-1) was investigated. In vivo administration of rhuIL-1, either intraperitoneally (IP) or intravenously (IV), induced a rapid transient loss of M-CSF receptor binding activity in bone marrow cells, with a nadir occurring between 2 to 4 hours while loss of M-CSF receptors by cells in the peritoneal cavity occurred only in animals receiving rhuIL-1 via IP administration. The loss of M-CSF receptor activity after rhuIL-1 treatment was correlated with an elevated level of circulating M-CSF. However, the loss of M-CSF receptors in marrow cells was prevented by dexamethasone (Dex) treatment before rhuIL-1 administration. The fact that Dex treatment also reduced the level of circulating M-CSF after rhuIL-1 administration suggests that the inhibitory effects of IL-1 are mediated through locally produced M-CSF. Administration of rhuM-CSF at higher doses, either IV or IP, also induced a loss of M-CSF receptor of lesser degree in the marrow cells. However, the loss of M-CSF receptors by the peritoneal cells was induced only in mice receiving rhuM-CSF through IP administration. Taken together, these results indicate the existence of a unidirectional barrier that prevents the transfer of blood M-CSF and IL- 1 to peritoneal cavity but not vice versa.


Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1316-1321 ◽  
Author(s):  
K Hagi ◽  
K Inaba ◽  
H Sakuta ◽  
S Muramatsu

The present study was performed to investigate the effect of beta- endorphin on macrophage colony-stimulating factor (M-CSF)-induced differentiation of macrophages from bone marrow cells in a semisolid culture system. beta-endorphin increased the number of macrophage colonies when bone marrow cells were cultured in the presence of M-CSF plus lipopolysaccharide (LPS). This was not the case with LPS- unresponsive C3H/HeJ mouse bone marrow cells. alpha-endorphin and gamma- endorphin were as effective as beta-endorphin in enhancing the colony formation. Exogenous interleukin-1 (IL-1), but neither IL-6 nor tumor necrosis factor (TNF), collaborated with beta-endorphin even in the absence of LPS, suggesting that IL-1 is a primary mediator of the effect of LPS. Indeed, anti-IL-1 antibody abolished the collaborative effect of beta-endorphin with LPS. Moreover, IL-1 was effective even for C3H/HeJ mouse bone marrow cells. Naloxone, an antagonist of endorphins for opioid-receptors, completely abrogated the effect of beta-endorphin. In a single-cell culture system, the collaboration between beta-endorphin and IL-1 was revealed by the increase in number and size of macrophage colonies, but collaboration between beta- endorphin and LPS did not occur. These results indicate that, in mixed cell culture, beta-endorphin acts in concert with paracrinal IL-1 induced by LPS to enhance M-CSF-dependent macrophage differentiation from immature precursor cells.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 639-646 ◽  
Author(s):  
J Eastgate ◽  
J Moreb ◽  
HS Nick ◽  
K Suzuki ◽  
N Taniguchi ◽  
...  

Abstract Pretreatment with interleukin-1 (IL-1) has been shown to protect mice from the myelotoxicity associated with irradiation via a mechanism potentially mediated through the induction of the antioxidant enzyme manganese superoxide dismutase (MnSOD). In this study, we have compared the ability of IL-1 to induce MnSOD mRNA in murine bone marrow cells and human cell lines with its ability to protect these cells against the damaging effects of ionizing radiation. Bone marrow cells obtained from mice 6 hours after a single injection of IL-1 demonstrate a dose- dependent increase in the expression of MnSOD RNA. In this same study, IL-1 was also shown to be radioprotective when given to mice 20 hours before lethal irradiation. Similarly, in vitro treatment with IL-1 of bone marrow cells isolated from 5-fluorouracil-treated mice results in elevated levels of MnSOD RNA. Pretreatment with IL-1 also protected bone marrow long-term culture-initiating cells capable of reconstituting irradiated stromal cultures from an irradiation insult. Furthermore, IL-1-treated human bone marrow cells display both elevated MnSOD RNA and protein levels when compared with media controls. The human A375 melanoma, A549 adenocarcinoma, and factor-dependent TF-1 leukemic cell lines demonstrate low basal MnSOD RNA levels that increase following treatment with IL-1. For the A375 cells, this correlates with increased MnSOD protein expression and radioprotection by IL-1 using a colony assay. In contrast, the chronic myelogenous leukemic cell line, K562, displays a high basal MnSOD RNA level, and this RNA expression is not further increased by IL-1 treatment. In addition, these cells are comparatively radioresistant and are not further protected by IL-1 treatment. Finally, the Mo-7 cell line displays a low basal level of MnSOD RNA that correlates with a high sensitivity to irradiation and IL-1 pretreatment has no effect on MnSOD RNA levels. Our results indicate that increased radioprotection by IL-1 correlates with the induction of the antioxidant enzyme MnSOD and this induction may be an important factor in IL-1 radioprotection.


FEBS Letters ◽  
1989 ◽  
Vol 257 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Keiko Mizuno ◽  
Satoru Nakai ◽  
Yasukazu Ohmoto ◽  
Yoshikatu Hirai

Sign in / Sign up

Export Citation Format

Share Document