scholarly journals Increase in the Number of Bone Marrow Osteoclast Precursors at Different Skeletal Sites, Particularly in Long Bone and Jaw Marrow in Mice Lacking IL-1RA

2020 ◽  
Vol 21 (11) ◽  
pp. 3774
Author(s):  
Giuliana Ascone ◽  
Yixuan Cao ◽  
Ineke D.C. Jansen ◽  
Irene Di Ceglie ◽  
Martijn H.J. van den Bosch ◽  
...  

Recently, it was shown that interleukin-1β (IL-1β) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn−/−) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C−), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31− Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn−/− mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn−/− mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn−/− cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn−/− osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.

2020 ◽  
Vol 21 (17) ◽  
pp. 6110
Author(s):  
Ineke D.C. Jansen ◽  
Wikky Tigchelaar-Gutter ◽  
Jolanda M. A. Hogervorst ◽  
Teun J. de Vries ◽  
Paul Saftig ◽  
...  

Lysosome associated membrane proteins (LAMPs) are involved in several processes, among which is fusion of lysosomes with phagosomes. For the formation of multinucleated osteoclasts, the interaction between receptor activator of nuclear kappa β (RANK) and its ligand RANKL is essential. Osteoclast precursors express RANK on their membrane and RANKL is expressed by cells of the osteoblast lineage. Recently it has been suggested that the transport of RANKL to the plasma membrane is mediated by lysosomal organelles. We wondered whether LAMP-2 might play a role in transportation of RANKL to the plasma membrane of osteoblasts. To elucidate the possible function of LAMP-2 herein and in the formation of osteoclasts, we analyzed these processes in vivo and in vitro using LAMP-2-deficient mice. We found that, in the presence of macrophage colony stimulating factor (M-CSF) and RANKL, active osteoclasts were formed using bone marrow cells from calvaria and long bone mouse bone marrow. Surprisingly, an almost complete absence of osteoclast formation was found when osteoclast precursors were co-cultured with LAMP-2 deficient osteoblasts. Fluorescence-activated cell sorting FACS analysis revealed that plasma membrane-bound RANKL was strongly decreased on LAMP-2 deficient osteoblasts. These results suggest that osteoblastic LAMP-2 is required for osteoblast-induced osteoclast formation in vitro.


2019 ◽  
Vol 20 (20) ◽  
pp. 4985 ◽  
Author(s):  
Hui-Lin Feng ◽  
Yen-Hua Chen ◽  
Sen-Shyong Jeng

Anemia is a severe complication in patients with chronic kidney disease (CKD). Treatment with exogenous erythropoietin (EPO) can correct anemia in many with CKD. We produced 5/6-nephrectomized rats that became uremic and anemic at 25 days post surgery. Injection of the anemic 5/6-nephrectomized rats with 2.8 mg zinc/kg body weight raised their red blood cell (RBC) levels from approximately 85% of the control to 95% in one day and continued for 4 days. We compared the effect of ZnSO4 and recombinant human erythropoietin (rHuEPO) injections on relieving anemia in 5/6-nephrectomized rats. After three consecutive injections, both the ZnSO4 and rHuEPO groups had significantly higher RBC levels (98 ± 6% and 102 ± 6% of the control) than the saline group (90 ± 3% of the control). In vivo, zinc relieved anemia in 5/6-nephrectomized rats similar to rHuEPO. In vitro, we cultured rat bone marrow cells supplemented with ZnCl2, rHuEPO, or saline. In a 4-day suspension culture, we found that zinc induced erythropoiesis similar to rHuEPO. When rat bone marrow cells were supplement-cultured with zinc, we found that zinc stimulated the production of EPO in the culture medium and that the level of EPO produced was dependent on the concentration of zinc supplemented. The production of EPO via zinc supplementation was involved in the process of erythropoiesis.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
OJ Borge ◽  
V Ramsfjell ◽  
OP Veiby ◽  
MJ Jr Murphy ◽  
S Lok ◽  
...  

The recently cloned c-mpl ligand, thrombopoietin (Tpo), has been extensively characterized with regard to its ability to stimulate the growth, development, and ploidy of megakaryocyte progenitor cells and platelet production in vitro and in vivo. Primitive hematopoietic progenitors have been shown to express c-mpl, the receptor for Tpo. In the present study, we show that Tpo efficiently promotes the viability of a subpopulation of Lin-Sca-1+ bone marrow progenitor cells. The ability of Tpo to maintain viable Lin-Sca-1+ progenitors was comparable to that of granulocyte colony-stimulating factor and interleukin-1, whereas stem cell factor (SCF) promoted the viability of a higher number of Lin-Sca-1+ progenitor cells when incubated for 40 hours. However, after prolonged (> 40 hours) preincubation, the viability-promoting effect of Tpo was similar to that of SCF. An increased number of progenitors surviving in response to Tpo had megakaryocyte potential (37%), although almost all of the progenitors produced other myeloid cell lineages as well, suggesting that Tpo acts to promote the viability of multipotent progenitors. The ability of Tpo to promote viability of Lin-Sca-1+ progenitor cells was observed when cells were plated at a concentration of 1 cell per well in fetal calf serum-supplemented and serum-depleted medium. Finally, the DNA strand breakage elongation assay showed that Tpo inhibits apoptosis of Lin-Sca-1+ bone marrow cells. Thus, Tpo has a potent ability to promote the viability and suppress apoptosis of primitive multipotent progenitor cells.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1060-1066 ◽  
Author(s):  
M Miura ◽  
CW Jackson ◽  
SA Lyles

Abstract To gain insight into the regulation of megakaryocyte precursors in vivo, we assayed (in vitro) megakaryocyte growth-promoting activity (Meg-GPA) in plasma of rats in which both marrow hypoplasia and thrombocytopenia had been induced by irradiation. Rats received whole body irradiation of 834 rad from a 137Cs source. Plasma was collected at intervals of hours to days, up through day 21 postirradiation, and was tested, at a concentration of 30%, for Meg-GPA on bone marrow cells cultured in 1.1% methylcellulose with 5 X 10(-5) M 2-mercaptoethanol. With normal rat plasma, no megakaryocyte colonies (defined as greater than or equal to 4 megakaryocytes) were seen and only a few single megakaryocytes and clusters (defined as 2 or 3 megakaryocytes) were formed. Two peaks of plasma Meg-GPA were observed after irradiation. The first appeared at 12 hr, before any decrease in marrow megakaryocyte concentration or platelet count. The second occurred on days 10–14 after irradiation, after the nadir in megakaryocyte concentration and while platelet counts were at their lowest levels. A dose-response study of plasma concentration and megakaryocyte growth, using plasma collected 11 days postirradiation, demonstrated that patterns of megakaryocyte growth were related to plasma concentration; formation of single megakaryocytes was optimal over a range of 20%-30% plasma concentration, while cluster and colony formation were optimal at a plasma concentration of 30%. All forms of megakaryocyte growth were decreased with 40% plasma. There was a linear relationship between the number of bone marrow cells plated and growth of single cells, clusters, and colonies using a concentration of 30% plasma collected 11 days after irradiation. We conclude that irradiation causes time- related increases in circulating megakaryocyte growth-promoting activity. We suggest that the irradiated rat is a good model for studying the relationships between Meg-GPA and megakaryocyte and platelet concentration in vivo.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3796-3796
Author(s):  
Christelle Gasser ◽  
Rebekka Grundler ◽  
Laurent Brault ◽  
Alec Bullock ◽  
Tobias Dechow ◽  
...  

Abstract Previous work has shown that FLT3-ITD mediated leukemogenesis is associated with increased expression of PIM1 and PIM2 serine/threonine kinases. Here we show that retroviral expression of FLT3-ITD could not compensate impaired clonogenic in vitro growth of PIM1−/− bone marrow cells. Induction of a lethal myelo- and lymphoproliferative disorder by FLT3-ITD in vivo was independent of PIM2, but rather unexpectedly, lethally irradiated recipients could not be reconstituted with FLT3-ITD expressing bone marrow cells lacking PIM1. Transplants of CSFE-labeled PIM1−/− cells revealed an impaired homing capacity to bone marrow and spleen. Expression of lower surface CXCR4 levels (while maintaining normal total CXCR4 levels) in PIM1−/− bone marrow cells was associated with significantly reduced migration towards a CXCL12 gradient and impaired CXCL12-mediated intracellular Ca2+ release. Using siRNA-mediated knockdown, a small molecule PIM inhibitor, expression of a dominant-negative acting PIM1 mutant or re-expression of PIM1 in knockout cells, we observed that PIM1 activity was critical for CXCR4 surface expression. In vitro kinase assays and masspectrometric analysis further revealed that PIM1 directly phosphorylated serine 339 located in the CXCR4 intracellular domain known to be essential for proper receptor recycling. Interestingly, in leukemic blasts from acute myeloid leukemia (AML) patients, we found an association of increased PIM1 expression and high-level of surface CXCR4. In addition, treatment of the cells with a small molecule PIM inhibitor resulted in decreased surface CXCR4 expression in some patients. Our work suggests that PIM1 exerts its oncogenic activity not only by supporting proliferation and survival but also by regulation of cell homing and migration through direct modification of the CXCL12/CXCR4 axis. As CXCR4 is a key mediator of cancer stem cell homing and metastasis, targeting of PIM1 may offer new therapeutic avenues against tumor progression and relapse.


Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 3001-3006 ◽  
Author(s):  
Andreas Weigert ◽  
Benjamin Weichand ◽  
Divya Sekar ◽  
Weixiao Sha ◽  
Christina Hahn ◽  
...  

Abstract Hypoxia-inducible factors (HIFs) regulate hematopoiesis in the embryo and maintain hematopoietic stem cell function in the adult. How hypoxia and HIFs contribute to hematopoietic lineage differentiation in the adult is ill defined. Here we provide evidence that HIF-1 limits differentiation of precursors into plasmacytoid dendritic cells (pDCs). Low oxygen up-regulated inhibitor of DNA binding 2 (ID2) and suppressed Flt3-L–induced differentiation of bone marrow cells to pDCs in wild-type but not HIF-1αfl/fl LysM-Cre bone marrow cells. Moreover, pDC differentiated normally in hypoxic ID2−/− bone marrow cultures. Finally, we observed elevated pDC frequencies in bone marrow, blood, and spleen of HIF-1αfl/fl LysM-Cre and ID2−/−, but not HIF-2αfl/fl LysM-Cre mice. Our data indicate that the low oxygen content in the bone marrow might limit pDC development. This might be an environmental mechanism to restrict the numbers of these potentially autoreactive cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1337-1337
Author(s):  
Christine Victoria Ichim ◽  
Dzana Dervovic ◽  
David Koos ◽  
Marciano D. Reis ◽  
Alden Chesney ◽  
...  

Abstract The leukemia stem cell model suggests that elucidation of the genes that regulate growth ability within the leukemia cell hierarchy will have important clinical relevance. We showed that the expression of NR2F6 (EAR-2), is greater in clonogenic leukemia single cells than in leukemia cells that do not divide, and that this gene is over-expressed in patients with acute myeloid leukemia and myelodysplastic syndrome. In vivo, overexpression of EAR-2 using a retroviral vector in a chimeric mouse model leads to a condition that resembles myelodysplastic syndrome with hypercellular bone marrow, increased blasts, abnormal localization of immature progenitors, morphological dysplasia of the erythroid lineage and a competitive advantage over wild-type cells, that eventually leads to AML in a subset of the mice, or after secondary-transplantation. Interestingly, animals transplanted with bone marrow that over-expresses EAR-2 develop leukemia that is preceded by expansion of the stem cell compartment in the transplanted mice—suggesting that EAR-2 is an important regulator of hematopoietic stem cell differentiation. Here we report that over-expression of EAR-2 also has a profound effect on the differentiation of erythroid progenitor cells both in vitro and in vivo. Studies of the roles of EAR-2 in normal primary bone marrow cells in vitro showed that overexpression of EAR-2 profoundly impaired differentiation along the erythroid lineage. EAR-2 over-expressing bone marrow cells formed 40% fewer BFU-E colonies, but had greatly extended replating capacity in colony assays. While knockdown of EAR-2 increased the number of cells produced per BFU-E colony 300%. Normal mice transplanted with grafts of purified bone marrow cells that over-expressed EAR-2 developed a rapidly fatal leukemia characterized by pancytopenia, enlargement of the spleen, and infiltration of blasts into the spleen, liver and peripheral blood. Sick animals had profound reduction of peripheral blood cell counts, particularly anemia with a 55% reduction in hemoglobin levels. Anemia was evident even on gross inspection of the blood and the liver in EAR-2 overexpressing animals. Analysis of the leukemic cells revealed an erythroblastic morphology, with the immunophenotype lineageneg, CD71high, TER119med. Hence, we wondered weather EAR-2 caused leukemia by arresting erythroid progenitor cell differentiation. Examination of the bone marrow of pre-leukemic animals showed a four-fold increase in cells with a pro-erythroblastic immunophenotype (CD71highTER119med , region I), and a four-fold decrease in orthochromatophilic erythroblasts (CD71lowTER119high , region IV). We observed no change in the numbers of basophilic erythroblasts (CD71highTER119high , region II) or late basophilic and polychromatophilic erythroblasts (CD71medTER119high, region III). These data suggests that over-expression of EAR-2 blocks erythroid cell differentiation at the pro-erythroblastic stage. Since EAR-2 over-expressing recipients died within 4 week, we wanted to definitively test whether animals had compromised radioprotection. We showed that decreasing the size of the bone marrow graft, reduced survival of the EAR-2 over-expressing cohort by a week, but had no effect on control animals proving that EAR-2 over-expression has a profound effect on erythropoietic reconstitution in vivo. Mechanistically, we show that DNA binding is necessary for EAR-2 function, and that EAR-2 functions in an HDAC-dependent manner, regulating expression of several genes. Pre-leukemic pro-erythroblastic cells (CD71highTER119med) that over-expressed EAR-2 had lower expression of genes involved in erythroid differentiation such as GATA1, EBF1, inhibitor of NFKB (NFKBia), ETV6, CEBP/a, LMO2, and Nfe2, and increased expression of GATA2, GLI1, ID1 and PU.1 than GFP control pro-erythroblasts. These data establish that EAR-2 is a novel oncogene whose cellular function is to regulate terminal differentiation of erythroid cells at the proerythroblastic (CD71highTER119med) stage by deregulating gene expression necessary for erythroid differentiation. Disclosures Ichim: Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding. Koos:Entest BioMedical: Employment, Equity Ownership, Patents & Royalties, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document