scholarly journals Interaction of HIV Tat model peptides with tRNA and 5S rRNA.

1997 ◽  
Vol 44 (3) ◽  
pp. 591-600 ◽  
Author(s):  
M Giel-Pietraszuk ◽  
M Z Barciszewska ◽  
P Mucha ◽  
P Rekowski ◽  
G Kupryszewski ◽  
...  

New data are presented on the interaction of model synthetic peptides containing an arginine-rich region of human immunodeficiency virus (HIV-Tat), with native RNA molecules: tRNA(Phe) of Saccharomyces cerevisiae and 5S rRNA from Lupinus luteus. Both RNA species form complexes with the Tat1 (GRKKRRQRRRA) and Tat2 (GRKKRRQRRRAPQDSQTHQASLSKQPA) peptides, as shown by electrophoretic gel shift and RNase footprint assays, and CD measurements. The nucleotide sequence UGGG located in the dihydrouridine loop of tRNAPhe as well as in the loop D of 5S rRNA is specifically protected against RNases. Our data indicate direct interactions of guanine of RNA moieties with arginine residues. These interactions seem similar to those observed in DNA-protein complexes, but different from those previously observed in the TAR RNA-Tat complexes.

1998 ◽  
Vol 63 (6) ◽  
pp. 842-850 ◽  
Author(s):  
Iwona Buskiewicz ◽  
Malgorzata Giel-Pietraszuk ◽  
Piotr Mucha ◽  
Piotr Rekowski ◽  
Gotfryd Kupryszewski ◽  
...  

We present data on the interaction of arginine-rich peptides of human immunodeficiency virus (HIV-Tat) with tRNAPhe of Saccharomyces cerevisiae. We have found that tRNA forms complexes with the Tat1 peptide of amino acid sequence GRKKRRQRRRA and its mutants where R is replaced by D-arginine, citrulline or ornithine. The structure of tRNA-Tat1 complex was probed by specific RNases digestions and Pb2+-induced cleavage of phosphodiester bond of guanosine. The nucleotide sequence UGGG located in the dihydrouridine loop of tRNAPhe binds to Tat peptide and therefore is specifically protected against RNases and is not hydrolyzed by Pb2+ ion. It seems that the peptide-RNA complex formation depends on direct recognition of guanine moieties of tRNA with arginine residues. These interactions are similar to those observed in many DNA-protein complexes, but are different from those previously observed for TAR RNA-Tat complexes.


2001 ◽  
Vol 20 (4-7) ◽  
pp. 441-449 ◽  
Author(s):  
Fabien Darfeuille ◽  
Christian Cazenave ◽  
Sergei Gryaznov ◽  
Frédéric Ducongé ◽  
Carmelo Di Primo ◽  
...  

2003 ◽  
Vol 77 (12) ◽  
pp. 6700-6708 ◽  
Author(s):  
Yida Yang ◽  
Ilia Tikhonov ◽  
Tracy J. Ruckwardt ◽  
Mahmoud Djavani ◽  
Juan Carlos Zapata ◽  
...  

ABSTRACT The human immunodeficiency virus (HIV) Tat protein has a critical role in viral transcription, but this study focuses on its additional role as an extracellular effector of lymphocyte cell death. It is well known that Tat induces tumor necrosis factor-related apoptosis-induced ligand (TRAIL) in peripheral blood mononuclear cells (PBMC), and we show that the majority of TRAIL is produced by the monocyte subset of PBMC. Human monocytes and U937 monoblastoid cells did not take up soluble HIV Tat-86, as T cells did, yet produced more TRAIL than did T cells. TRAIL secretion was induced by Tat and by a cysteine-rich peptide of Tat but not by sulfhydryl-modified Tat toxoid. Although there was only a slight increase in cell surface expression of TRAIL on monocytes, sufficient TRAIL was secreted to be toxic for T cells. The cytotoxicity of Tat-stimulated monocyte medium could be blocked by a TRAIL-neutralizing antibody. T cells treated with Tat did not secrete enough TRAIL to mediate cell death in our assay. Remarkably, uninfected T cells are more susceptible to TRAIL than are HIV-infected T cells. The production of TRAIL by Tat-stimulated monocytes provides a mechanism by which HIV infection can destroy uninfected bystander cells.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1865-1874
Author(s):  
Christina Rosen ◽  
Dale Dorsett ◽  
Joseph Jack

Abstract The DNA-binding protein encoded by the zeste gene of Drosophila activates transcription and mediates interchromosomal interactions such as transvection. The mutant protein encoded by the zeste1 (z1) allele retains the ability to support transvection, but represses white. Similar to transvection, repression requires Zeste-Zeste protein interactions and a second copy of white, either on the homologous chromosome or adjacent on the same chromosome. We characterized two pseudorevertants of z1 (z1-35 and z1-42) and another zeste mutation (z78c) that represses white. The z1 lesion alters a lysine residue located between the N-terminal DNA-binding domain and the C-terminal hydrophobic repeats involved in Zeste self-interactions. The z78c mutation alters a histidine near the site of the z1 lesion. Both z1 pseudorevertants retain the z1 lesion and alter different prolines in a proline-rich region located between the z1 lesion and the self-interaction domain. The pseudorevertants retain the ability to self-interact, but fail to repress white or support transvection at Ultrabithorax. To account for these observations and evidence indicating that Zeste affects gene expression through Polycomb group (Pc-G) protein complexes that epigenetically maintain chromatin states, we suggest that the regions affected by the z1, z78c, and pseudorevertant lesions mediate interactions between Zeste and the maintenance complexes.


2003 ◽  
Vol 84 (3) ◽  
pp. 603-606 ◽  
Author(s):  
Lars H. Lund ◽  
Britta Wahren ◽  
Mariano A. Garcia-Blanco

Human immunodeficiency virus type 1 (HIV-1) Tat and human Cyclin T1 form a complex and together recognize the viral TAR RNA element with specificity. Using HIV-1/equine infectious anaemia virus TAR chimeras, we show that in addition to the well-characterized interaction with the bulge, Tat recognizes the distal stem and the loop of TAR. These data support previously proposed, but unproven, molecular models.


2009 ◽  
Vol 81 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Yitzhak Tor

RNA molecules play essential roles in biological processes and are evolving as important targets for therapeutic intervention. Small molecules that specifically bind unique RNA sites and prevent the formation of functional RNA folds or RNA-protein complexes can modulate cell functions and can become of therapeutic potential. To explore such recognition events and to fabricate discovery assays, effective biophysical tools need to be advanced. When carefully designed, new fluorescent nucleosides can serve an unparalleled role in such studies. Our criteria for "ideal" fluorescent nucleoside analogs include: (a) high structural similarity to the native nucleobases to faithfully mimic their size and shape, as well as hybridization and recognition properties; (b) red-shifted absorption bands; (c) red-shifted emission band (preferably in the visible); (d) a reasonable emission quantum efficiency; and, importantly, (e) sensitivity of their photophysical parameters to changes in the microenvironment. Our program, aimed at the development of new emissive isomorphic nucleoside analogs, has yielded several useful nucleobases. Selected analogs were implemented in fluorescence-based assays. This overview presents the motivation for this work by introducing RNA-ligand interactions and discusses the design and synthesis of fluorescent isosteric nucleobase analogs and their utilization for the fabrication of "real-time" fluorescence-based biophysical assays.


2012 ◽  
Vol 427 (2) ◽  
pp. 130-132 ◽  
Author(s):  
Motoaki Wakiyama ◽  
Yoko Kaitsu ◽  
Reiko Muramatsu ◽  
Koji Takimoto ◽  
Shigeyuki Yokoyama

Sign in / Sign up

Export Citation Format

Share Document