scholarly journals Improving functional density of time-critical applications using hardware-based dynamic reconfiguration and bitstream specialisation

2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Rikus Le Roux ◽  
George Van Schoor ◽  
Pieter Van Vuuren

The dynamic reconfiguration of an FPGA has many advantages, but the overhead from the process reduces the functional density of applications. Functional density is an indication of the composite benefits a reconfigured application obtains above its generic counterpart and measures the computational throughput per unit hardware resources. Typically, only quasi-static applications obtain a functional density advantage by dynamically reconfiguring its parameters. Contributing to the functional density reduction of applications with tight time constraints is the overhead to generate a new configuration, and the time it takes to load it onto the device. Normally these applications have to reuse their hardware numerous times between configurations before obtaining a functional density advantage. The most promising reconfiguration method to improve functional density with minimal hardware reuse was one that extracts certain characteristics from the bitstream and then implements a bitstream specialiser that generates new hardware at bit-level while the device is being reconfigured. While it was shown that this method allows reconfiguration of an application in real-time, its effect on functional density was not determined. This paper will show that a significant increase in functional density can be achieved for applications where reconfiguration is required before the next execution cycle of the application.

TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 679-689
Author(s):  
CYDNEY RECHTIN ◽  
CHITTA RANJAN ◽  
ANTHONY LEWIS ◽  
BETH ANN ZARKO

Packaging manufacturers are challenged to achieve consistent strength targets and maximize production while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning. The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under everchanging machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1881
Author(s):  
Jesús Lázaro ◽  
Armando Astarloa ◽  
Mikel Rodríguez ◽  
Unai Bidarte ◽  
Jaime Jiménez

Since the 1990s, the digitalization process has transformed the communication infrastructure within the electrical grid: proprietary infrastructures and protocols have been replaced by the IEC 61850 approach, which realizes interoperability among vendors. Furthermore, the latest networking solutions merge operational technologies (OTs) and informational technology (IT) traffics in the same media, such as time-sensitive networking (TSN)—standard, interoperable, deterministic, and Ethernet-based. It merges OT and IT worlds by defining three basic traffic types: scheduled, best-effort, and reserved traffic. However, TSN demands security against potential new cyberattacks, primarily, to protect real-time critical messages. Consequently, security in the smart grid has turned into a hot topic under regulation, standardization, and business. This survey collects vulnerabilities of the communication in the smart grid and reveals security mechanisms introduced by international electrotechnical commission (IEC) 62351-6 and how to apply them to time-sensitive networking.


2012 ◽  
Vol 11 (4) ◽  
pp. 1-24 ◽  
Author(s):  
Francesco Paterna ◽  
Andrea Acquaviva ◽  
Francesco Papariello ◽  
Giuseppe Desoli ◽  
Luca Benini

Sign in / Sign up

Export Citation Format

Share Document