scholarly journals Mood Prediction in Consideration of Certainty Factor Using Multilayer Deep Neural Network and Storage-Type Prediction Models

2016 ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria Bibi ◽  
Muhammad Kashif Hanif ◽  
Muhammad Umer Sarwar ◽  
Muhammad Irfan Khan ◽  
Shouket Zaman Khan ◽  
...  

Asian citrus psyllid, Diaphorina citri Kuwayama (Liviidae: Hemiptera) is a menacing and notorious pest of citrus plants. It vectors a phloem vessel-dwelling bacterium Candidatus Liberibacter asiaticus, which is a causative pathogen of the serious citrus disease known as Huanglongbing. Huanglongbing disease is a major bottleneck in the export of citrus fruits from Pakistan. It is being responsible for huge citrus economic losses globally. In the current study, several prediction models were developed based on regression algorithms of machine learning to monitor different phenological stages of Asian citrus psyllid to predict its population about different abiotic variables (average maximum temperature, average minimum temperature, average weekly temperature, average weekly relative humidity, and average weekly rainfall) and biotic variable (host plant phenological patterns) in citrus-growing regions of Pakistan. The pest prediction models can be used for proper applications of pesticides only when needed for reducing the environmental and cost impacts of pesticides. Pearson’s correlation analysis was performed to find the relationship between different predictor (abiotic and biotic) variables and pest infestation rate on citrus plants. Multiple linear regression, random forest regressor, and deep neural network approaches were compared to predict population dynamics of Asian citrus psyllid. In comparison with other regression techniques, a deep neural network-based prediction model resulted in the least root mean squared error values while predicting egg, nymph, and adult populations.


2021 ◽  
Vol 6 (9) ◽  
pp. 129
Author(s):  
T. Pradeep ◽  
Abidhan Bardhan ◽  
Avijit Burman ◽  
Pijush Samui

The majority of natural ground vibrations are caused by the release of strain energy accumulated in the rock strata. The strain reacts to the formation of crack patterns and rock stratum failure. Rock strain prediction is one of the significant works for the assessment of the failure of rock material. The purpose of this paper is to investigate the development of a new strain prediction approach in rock samples utilizing deep neural network (DNN) and hybrid ANFIS (adaptive neuro-fuzzy inference system) models. Four optimization algorithms, namely particle swarm optimization (PSO), Fireflies algorithm (FF), genetic algorithm (GA), and grey wolf optimizer (GWO), were used to optimize the learning parameters of ANFIS and ANFIS-PSO, ANFIS-FF, ANFIS-GA, and ANFIS-GWO were constructed. For this purpose, the necessary datasets were obtained from an experimental setup of an unconfined compression test of rocks in lateral and longitudinal directions. Various statistical parameters were used to investigate the accuracy of the proposed prediction models. In addition, rank analysis was performed to select the most robust model for accurate rock sample prediction. Based on the experimental results, the constructed DNN is very potential to be a new alternative to assist engineers to estimate the rock strain in the design phase of many engineering projects.


2020 ◽  
Author(s):  
Valentín Kivachuk Burdá ◽  
Michaël Zamo

<p>Any software relies on data, and the meteorological field is not an exception. The importance of using correct and accurate data is as important as using it efficiently. GRIB and NetCDF are the most popular file formats used in Meteorology, being able to store exactly the same data in any of them. However, they differ in how they internally treat the data, and transforming from GRIB (a simpler file format) to NetCDF is not enough to ensure the best efficiency for final applications.</p><p>In this study, we improved the performance and storage of <em>ARPEGE cloud cover forecasts post-processing with convolutional neural network</em> and <em>Precipitation Nowcasting using Deep Neural Network</em> projects (proposed in other sessions for the EGU general assembly). The data treatments of both projects were studied and different NetCDF capabilities were applied in order to obtain significantly faster execution times (up to 60 times faster) and more efficient space usage.</p>


2019 ◽  
Vol 3 (3) ◽  
pp. 50
Author(s):  
Nihei ◽  
Nakano

Meeting minutes are useful, but creating meeting summaries are a time consuming task. Aiming at supporting such task, this paper proposes prediction models for important utterances that should be included in the meeting summary by using multimodal and multiparty features. We will tackle this issue from two approaches: Handcrafted feature models and deep neural network models. The best handcrafted feature model achieved 0.707 in F-measure, and the best deep-learning based verbal and nonverbal model (V-NV model) achieved 0.827 in F-measure. Based on the V-NV model, we implemented a meeting browser, and conducted a user study. The results showed that the proposed meeting browser better contributes to the understanding of the content of the discussion and the participant roles in the discussion than the conventional text-based browser.


2021 ◽  
Author(s):  
◽  
Majid Ashouri

The rapidly evolving Internet of Things (IoT) systems demands addressing new requirements. This particularly needs efficient deployment of IoT systems to meet the quality requirements such as latency, energy consumption, privacy, and bandwidth utilization. The increasing availability of computational resources close to the edge has prompted the idea of using these for distributed computing and storage, known as edge computing. Edge computing may help and complement cloud computing to facilitate deployment of IoT systems and improve their quality. However, deciding where to deploy the various application components is not a straightforward task, and IoT system designer should be supported for the decision. To support the designers, in this thesis we focused on the system qualities, and aimed for three main contributions. First, by reviewing the literature, we identified the relevant and most used qualities and metrics. Moreover, to analyse how computer simulation can be used as a supporting tool, we investigated the edge computing simulators, and in particular the metrics they provide for modeling and analyzing IoT systems in edge computing. Finally, we introduced a method to represent how multiple qualities can be considered in the decision. In particular, we considered distributing Deep Neural Network layers as a use case and raked the deployment options by measuring the relevant metrics via simulation.


Author(s):  
M. Dhilsath Fathima ◽  
R. Hariharan ◽  
S. P. Raja

Chronic kidney disease (CKD) is a health concern that affects people all over the world. Kidney dysfunction or impaired kidney functions are the causes of CKD. The machine learning-based prediction models are used to determine the risk level of CKD and assist healthcare practitioners in delaying and preventing the disease’s progression. The researchers proposed many prediction models for determining the CKD risk level. Although these models performed well, their precision is limited since they do not handle missing values in the clinical dataset adequately. The missing values of a clinical dataset can degrade the training outcomes that leads to false predictions. Thus, imputing missing values increases the prediction model performance. This proposed work developed a novel imputation technique by combining Multiple Imputation by Chained Equations and [Formula: see text]-Nearest Neighbors (MICE–KNN) for imputing the missing values. The experimental results show that MICE–KNN accurately predicts the missing values, and the Deep Neural Network (DNN) improves the prediction performance of the CKD model. Various metrics like mean absolute error, accuracy, specificity, Matthews correlation coefficient, the area under the curve, [Formula: see text]-score, sensitivity, and precision have been used to evaluate the proposed CKD model performance. The performance analysis exhibits that MICE–KNN with deep learning outperforms other classifiers. According to our experimental study, the MICE–KNN imputation algorithm with DNN is more appropriate for predicting the kidney disease.


2021 ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

Abstract Breast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic, predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Sign in / Sign up

Export Citation Format

Share Document