scholarly journals Monitoring Population Phenology of Asian Citrus Psyllid Using Deep Learning

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria Bibi ◽  
Muhammad Kashif Hanif ◽  
Muhammad Umer Sarwar ◽  
Muhammad Irfan Khan ◽  
Shouket Zaman Khan ◽  
...  

Asian citrus psyllid, Diaphorina citri Kuwayama (Liviidae: Hemiptera) is a menacing and notorious pest of citrus plants. It vectors a phloem vessel-dwelling bacterium Candidatus Liberibacter asiaticus, which is a causative pathogen of the serious citrus disease known as Huanglongbing. Huanglongbing disease is a major bottleneck in the export of citrus fruits from Pakistan. It is being responsible for huge citrus economic losses globally. In the current study, several prediction models were developed based on regression algorithms of machine learning to monitor different phenological stages of Asian citrus psyllid to predict its population about different abiotic variables (average maximum temperature, average minimum temperature, average weekly temperature, average weekly relative humidity, and average weekly rainfall) and biotic variable (host plant phenological patterns) in citrus-growing regions of Pakistan. The pest prediction models can be used for proper applications of pesticides only when needed for reducing the environmental and cost impacts of pesticides. Pearson’s correlation analysis was performed to find the relationship between different predictor (abiotic and biotic) variables and pest infestation rate on citrus plants. Multiple linear regression, random forest regressor, and deep neural network approaches were compared to predict population dynamics of Asian citrus psyllid. In comparison with other regression techniques, a deep neural network-based prediction model resulted in the least root mean squared error values while predicting egg, nymph, and adult populations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 696
Author(s):  
Eun Ji Choi ◽  
Jin Woo Moon ◽  
Ji-hoon Han ◽  
Yongseok Yoo

The type of occupant activities is a significantly important factor to determine indoor thermal comfort; thus, an accurate method to estimate occupant activity needs to be developed. The purpose of this study was to develop a deep neural network (DNN) model for estimating the joint location of diverse human activities, which will be used to provide a comfortable thermal environment. The DNN model was trained with images to estimate 14 joints of a person performing 10 common indoor activities. The DNN contained numerous shortcut connections for efficient training and had two stages of sequential and parallel layers for accurate joint localization. Estimation accuracy was quantified using the mean squared error (MSE) for the estimated joints and the percentage of correct parts (PCP) for the body parts. The results show that the joint MSEs for the head and neck were lowest, and the PCP was highest for the torso. The PCP for individual activities ranged from 0.71 to 0.92, while typing and standing in a relaxed manner were the activities with the highest PCP. Estimation accuracy was higher for relatively still activities and lower for activities involving wide-ranging arm or leg motion. This study thus highlights the potential for the accurate estimation of occupant indoor activities by proposing a novel DNN model. This approach holds significant promise for finding the actual type of occupant activities and for use in target indoor applications related to thermal comfort in buildings.


Author(s):  
Serdar Durak ◽  
Bülent Bayram ◽  
Tolga Bakırman ◽  
Murat Erkut ◽  
Metehan Doğan ◽  
...  

Author(s):  
Anitha Ruth J. ◽  
Uma R. ◽  
Meenakshi A.

Apples are the most productive fruits in the world with a lot of medicinal and nutritional value. Significant economic losses occur frequently due to various diseases that occur on a huge scale of apple production. Consequently, the effective and timely discovery of apple leaf infection becomes compulsory. The proposed work uses optimal deep neural network for effectively identifying the diseases of apple trees. This work utilizes a convolution neural network to capture the features of Apple leaves. Extracted features are optimized with the help of the optimization algorithm. The optimized features are utilized in the leaf disease identification process. Here the traditional DNN algorithm is modified by means of weight optimization using adaptive monarch butterfly optimization (AMBO) algorithm. The experimental results show that the proposed disease identification methodology based on the optimized deep neural network accomplishes an overall accuracy of 98.42%.


2021 ◽  
Vol 6 (9) ◽  
pp. 129
Author(s):  
T. Pradeep ◽  
Abidhan Bardhan ◽  
Avijit Burman ◽  
Pijush Samui

The majority of natural ground vibrations are caused by the release of strain energy accumulated in the rock strata. The strain reacts to the formation of crack patterns and rock stratum failure. Rock strain prediction is one of the significant works for the assessment of the failure of rock material. The purpose of this paper is to investigate the development of a new strain prediction approach in rock samples utilizing deep neural network (DNN) and hybrid ANFIS (adaptive neuro-fuzzy inference system) models. Four optimization algorithms, namely particle swarm optimization (PSO), Fireflies algorithm (FF), genetic algorithm (GA), and grey wolf optimizer (GWO), were used to optimize the learning parameters of ANFIS and ANFIS-PSO, ANFIS-FF, ANFIS-GA, and ANFIS-GWO were constructed. For this purpose, the necessary datasets were obtained from an experimental setup of an unconfined compression test of rocks in lateral and longitudinal directions. Various statistical parameters were used to investigate the accuracy of the proposed prediction models. In addition, rank analysis was performed to select the most robust model for accurate rock sample prediction. Based on the experimental results, the constructed DNN is very potential to be a new alternative to assist engineers to estimate the rock strain in the design phase of many engineering projects.


Author(s):  
Hugo C. Osório ◽  
Jorge Rocha ◽  
Rita Roquette ◽  
Nélia M. Guerreiro ◽  
Líbia Zé-Zé ◽  
...  

Aedes albopictus is an invasive mosquito that has colonized several European countries as well as Portugal, where it was detected for the first time in 2017. To increase the knowledge of Ae. albopictus population dynamics, a survey was carried out in the municipality of Loulé, Algarve, a Southern temperate region of Portugal, throughout 2019, with Biogents Sentinel traps (BGS traps) and ovitraps. More than 19,000 eggs and 400 adults were identified from May 9 (week 19) and December 16 (week 50). A positive correlation between the number of females captured in the BGS traps and the number of eggs collected in ovitraps was found. The start of activity of A. albopictus in May corresponded to an average minimum temperature above 13.0 °C and an average maximum temperature of 26.2 °C. The abundance peak of this A. albopictus population was identified from September to November. The positive effect of temperature on the seasonal activity of the adult population observed highlight the importance of climate change in affecting the occurrence, abundance, and distribution patterns of this species. The continuously monitoring activities currently ongoing point to an established population of A. albopictus in Loulé, Algarve, in a dispersion process to other regions of Portugal and raises concern for future outbreaks of mosquito-borne diseases associated with this invasive mosquito species.


Sign in / Sign up

Export Citation Format

Share Document