scholarly journals Rock Strain Prediction Using Deep Neural Network and Hybrid Models of ANFIS and Meta-Heuristic Optimization Algorithms

2021 ◽  
Vol 6 (9) ◽  
pp. 129
Author(s):  
T. Pradeep ◽  
Abidhan Bardhan ◽  
Avijit Burman ◽  
Pijush Samui

The majority of natural ground vibrations are caused by the release of strain energy accumulated in the rock strata. The strain reacts to the formation of crack patterns and rock stratum failure. Rock strain prediction is one of the significant works for the assessment of the failure of rock material. The purpose of this paper is to investigate the development of a new strain prediction approach in rock samples utilizing deep neural network (DNN) and hybrid ANFIS (adaptive neuro-fuzzy inference system) models. Four optimization algorithms, namely particle swarm optimization (PSO), Fireflies algorithm (FF), genetic algorithm (GA), and grey wolf optimizer (GWO), were used to optimize the learning parameters of ANFIS and ANFIS-PSO, ANFIS-FF, ANFIS-GA, and ANFIS-GWO were constructed. For this purpose, the necessary datasets were obtained from an experimental setup of an unconfined compression test of rocks in lateral and longitudinal directions. Various statistical parameters were used to investigate the accuracy of the proposed prediction models. In addition, rank analysis was performed to select the most robust model for accurate rock sample prediction. Based on the experimental results, the constructed DNN is very potential to be a new alternative to assist engineers to estimate the rock strain in the design phase of many engineering projects.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


2020 ◽  
pp. 004728752092124 ◽  
Author(s):  
Wolfram Höpken ◽  
Tobias Eberle ◽  
Matthias Fuchs ◽  
Maria Lexhagen

Because of high fluctuations of tourism demand, accurate predictions of tourist arrivals are of high importance for tourism organizations. The study at hand presents an approach to enhance autoregressive prediction models by including travelers’ web search traffic as external input attribute for tourist arrival prediction. The study proposes a novel method to identify relevant search terms and to aggregate them into a compound web-search index, used as additional input of an autoregressive prediction approach. As methods to predict tourism arrivals, the study compares autoregressive integrated moving average (ARIMA) models with the machine learning–based technique artificial neural network (ANN). Study results show that (1) Google Trends data, mirroring traveler’s online search behavior (i.e., big data information source), significantly increase the performance of tourist arrival prediction compared to autoregressive approaches using past arrivals alone, and (2) the machine learning technique ANN has the capacity to outperform ARIMA models.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0190831 ◽  
Author(s):  
Zilong Jiang ◽  
Shu Gao ◽  
Mingjiang Li

2014 ◽  
Vol 986-987 ◽  
pp. 524-528 ◽  
Author(s):  
Ting Jing Ke ◽  
Min You Chen ◽  
Huan Luo

This paper proposes a short-term wind power dynamic prediction model based on GA-BP neural network. Different from conventional prediction models, the proposed approach incorporates a prediction error adjusting strategy into neural network based prediction model to realize the function of model parameters self-adjusting, thus increase the prediction accuracy. Genetic algorithm is used to optimize the parameters of BP neural network. The wind power prediction results from different models with and without error adjusting strategy are compared. The comparative results show that the proposed dynamic prediction approach can provide more accurate wind power forecasting.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria Bibi ◽  
Muhammad Kashif Hanif ◽  
Muhammad Umer Sarwar ◽  
Muhammad Irfan Khan ◽  
Shouket Zaman Khan ◽  
...  

Asian citrus psyllid, Diaphorina citri Kuwayama (Liviidae: Hemiptera) is a menacing and notorious pest of citrus plants. It vectors a phloem vessel-dwelling bacterium Candidatus Liberibacter asiaticus, which is a causative pathogen of the serious citrus disease known as Huanglongbing. Huanglongbing disease is a major bottleneck in the export of citrus fruits from Pakistan. It is being responsible for huge citrus economic losses globally. In the current study, several prediction models were developed based on regression algorithms of machine learning to monitor different phenological stages of Asian citrus psyllid to predict its population about different abiotic variables (average maximum temperature, average minimum temperature, average weekly temperature, average weekly relative humidity, and average weekly rainfall) and biotic variable (host plant phenological patterns) in citrus-growing regions of Pakistan. The pest prediction models can be used for proper applications of pesticides only when needed for reducing the environmental and cost impacts of pesticides. Pearson’s correlation analysis was performed to find the relationship between different predictor (abiotic and biotic) variables and pest infestation rate on citrus plants. Multiple linear regression, random forest regressor, and deep neural network approaches were compared to predict population dynamics of Asian citrus psyllid. In comparison with other regression techniques, a deep neural network-based prediction model resulted in the least root mean squared error values while predicting egg, nymph, and adult populations.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Karrar Raoof Kareem Kamoona ◽  
Cenk Budayan

In construction project management, there are several factors influencing the final project cost. Among various approaches, estimate at completion (EAC) is an essential approach utilized for final project estimation. The main merit of EAC is including the probability of the project performance and risk. In addition, EAC is extremely helpful for project managers to define and determine the critical throughout the project progress and determine the appropriate solutions to these problems. In this research, a relatively new intelligent model called deep neural network (DNN) is proposed to calculate the EAC. The proposed DNN model is authenticated against one of the predominated intelligent models conducted on the EAC prediction, namely, support vector regression model (SVR). In order to demonstrate the capability of the model in the engineering applications, historical project information obtained from fifteen projects in Iraq region is inspected in this research. The second phase of this research is about the integration of two input algorithms hybridized with the proposed and the comparable predictive intelligent models. These input optimization algorithms are genetic algorithm (GA) and brute force algorithm (BF). The aim of integrating these input optimization algorithms is to approximate the input attributes and investigate the highly influenced factors on the calculation of EAC. Overall, the enthusiasm of this study is to provide a robust intelligent model that estimates the project cost accurately over the traditional methods. Also, the second aim is to introduce a reliable methodology that can provide efficient and effective project cost control. The proposed GA-DNN is demonstrated as a reliable and robust intelligence model for EAC calculation.


2021 ◽  
pp. 0734242X2110179
Author(s):  
Mohammadali Faezirad ◽  
Alireza Pooya ◽  
Zahra Naji-Azimi ◽  
Maryam Amir Haeri

Food waste planning at universities is often a complex matter due to the large volume of food and variety of services. A major portion of university food waste arises from dining systems including meal booking and distribution. Although dining systems have a significant role in generating food wastes, few studies have designed prediction models that could control such wastes based on reservation data and behavior of students at meal delivery times. To fill this gap, analyzing meal booking systems at universities, the present study proposed a new model based on machine learning to reduce the food waste generated at major universities that provide food subsidies. Students’ reservation and their presence or absence at the dining hall (show/no-show rate) at mealtime were incorporated in data analysis. Given the complexity of the relationship between the attributes and the uncertainty observed in user behavior, a model was designed to analyze definite and random components of demand. An artificial neural network-based model designed for demand prediction provided a two-step prediction approach to dealing with uncertainty in actual demand. In order to estimate the lowest total cost based on the cost of waste and the shortage penalty cost, an uncertainty-based analysis was conducted at the final step of the research. This study formed a framework that could reduce the food waste volume by up to 79% and control the penalty and waste cost in the case study. The model was investigated with cost analysis and the results proved its efficiency in reducing total cost.


Sign in / Sign up

Export Citation Format

Share Document