scholarly journals Network activity in primary hippocampal cultures upon HIF-prolyl hydroxylase inhibition

2021 ◽  
Vol 29 (3) ◽  
pp. 421-427
2013 ◽  
Vol 699 (1-3) ◽  
pp. 124-131 ◽  
Author(s):  
Soohwan Yum ◽  
Hea-Jeong Doh ◽  
Sungchae Hong ◽  
Seongkeun Jeong ◽  
Dae-Duk Kim ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Matthew E Cockman ◽  
Kerstin Lippl ◽  
Ya-Min Tian ◽  
Hamish B Pegg ◽  
William D Figg ◽  
...  

Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.


2018 ◽  
Author(s):  
Nina Kozlova ◽  
Daniela Mennerich ◽  
Anatoly Samoylenko ◽  
Elitsa Y. Dimova ◽  
Peppi Koivunen ◽  
...  

SummaryThe EGFR-adaptor protein CIN85 has been shown to promote breast cancer malignancy and hypoxia-inducible factor (HIF) stability. However, the mechanisms underlying cancer promotion remain ill-defined. Here, we show that CIN85 is a novel binding partner of the main HIF-prolyl hydroxylase PHD2, but not of PHD1 or PHD3. Mechanistically, the N-terminal SH3 domains of CIN85 interact with the proline-arginine rich region within the N-terminus of PHD2, thereby inhibiting PHD2 activity and HIF-degradation. This activity is essential in vivo, as specific loss of the CIN85-PHD2 interaction in CRISPR/Cas9 edited cells affected growth and migration properties as well as tumor growth in mice. Overall, we discovered a previously unrecognized tumor growth checkpoint that is regulated by CIN85-PHD2, and uncovered an essential survival function in tumor cells linking growth factor adaptors with hypoxia signaling.


2019 ◽  
Vol 48 (2) ◽  
pp. 362-378 ◽  
Author(s):  
David F. Adams ◽  
Mark S. Watkins ◽  
Luc Durette ◽  
Josée Laliberté ◽  
Félix Goulet ◽  
...  

Daprodustat (GSK1278863) is a hypoxia-inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitor in development for treatment of anemia of chronic kidney disease. Daprodustat’s biological activity simulates components of the natural response to hypoxia; inhibition of PHDs results in HIF stabilization and modulation of HIF-controlled gene products, including erythropoietin. The carcinogenic potential of daprodustat was evaluated in 2-year carcinogenicity studies in Sprague-Dawley rats and CD-1 mice, where once-daily doses were administered. The mouse study also included evaluation of daprodustat’s 3 major circulating human metabolites. There were no neoplastic findings that were considered treatment related in either study. Exaggerated pharmacology resulted in significantly increased red cell mass and subsequent multiorgan congestion and secondary non-neoplastic effects in both species, similar to those observed in chronic toxicity studies. In rats, these included aortic thrombosis and an exacerbation of spontaneous rodent cardiomyopathy, which contributed to a statistically significant decrease in survival in high-dose males (group terminated in week 94). Survival was not impacted in mice at any dose. Systemic exposures (area under the plasma concentration–time curve) to daprodustat at the high doses in rats and mice exceed predicted maximal human clinical exposure by ≥143-fold. These results suggest that daprodustat and metabolites do not pose a carcinogenic risk at clinical doses.


Sign in / Sign up

Export Citation Format

Share Document