scholarly journals The role of SiC on the Desorption Temperature of Mg-based Hydrogen Storage Materials Prepared by Intensive Milling Method

2016 ◽  
Vol 1 ◽  
Author(s):  
Zulkarnain Jalil

<p>Magnesium, theoretically, have the ability to absorb hydrogen in large quantities (~ 7.6 wt%). However, the kinetic reaction is very slow, thereby hindering the application of magnesium for hydrogen storage material. In this paper, we reported a series of preliminary studies on magnesium inserting with silicon carbide (2 wt%)obtain by mechanical milling method. The vibratory mill type apparatus was used for 180 hours. As the results, structural characterization by XRD showed that the crystallite size after milling for 180 hours decreased around tens nanometer. It was also found that the desorption temperature for the sample after 180 milling inform us that the material decomposed at 330°C. It can concluded that Mg catalyzed with 2 wt% of silicon carbide (SiC) can be prepared by vibratory ball milling. </p>

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Zulkarnain Jalil

<p>Magnesium, theoretically, have the ability to absorb hydrogen in large quantities (~ 7.6 wt%). However, the kinetic reaction is very slow, thereby hindering the application of magnesium for hydrogen storage material. In this paper, we reported a series of preliminary studies on magnesium inserting with silicon carbide (2 wt%)obtain by mechanical milling method. The vibratory mill type apparatus was used for 180 hours. As the results, structural characterization by XRD showed that the crystallite size after milling for 180 hours decreased around tens nanometer. It was also found that the desorption temperature for the sample after 180 milling inform us that the material decomposed at 330°C. It can concluded that Mg catalyzed with 2 wt% of silicon carbide (SiC) can be prepared by vibratory ball milling. </p>


2004 ◽  
Vol 837 ◽  
Author(s):  
Sesha S. Srinivasan ◽  
Craig M. Jensen

ABSTRACTThe development of light weight hydrogen storage systems with high volumetric and gravimetric hydrogen densities is indeed essential for the on-board fuel cell vehicular applications. Titanium doped NaAlH4 is right now considered as the potential hydrogen storage system, which satisfies the said criteria. The dehydrogenation of NaAlH4 consists of two consecutive steps of decomposition at 220 and 250° C with the total hydrogen release of 5.6 wt.%. However, doping a few mole concentrations of selected transition metal complexes to the host hydride reduces significantly the decomposition temperatures to 100 and 185° C (equilibrium H2 pressure ∼1 MPa) respectively. This breakthrough has been followed by a great deal of effort to develop NaAlH4 as a practical hydrogen storage material. For an ideal hydrogen storage material, the dehydrogenation kinetics and the cycling stability are important properties to be evaluated. Keeping these points to ponder, we have studied the dehydriding kinetics of the Ti-doped NaAlH4 over a number of dehydrogenation and rehydrogenation cycles. Besides, the Ti-doped NaAlH4 has been prepared from the hydrogenation of NaH and Al using the solvent mediated milling method. Comparing the initial and final cycling stages of Ti doped (NaH + Al), the synchrotron powder x-ray diffraction profiles exhibit, a growing resistance to the hydrogenation of Na3AlH6 to NaAlH4.


2018 ◽  
Vol 5 (6) ◽  
pp. 064002 ◽  
Author(s):  
Zulkarnain Jalil ◽  
Adi Rahwanto ◽  
Ismail Ismail ◽  
Hizir Sofyan ◽  
Erfan Handoko

2016 ◽  
Vol 6 (01) ◽  
pp. 1 ◽  
Author(s):  
Nirmala Sari ◽  
Adi Rahwanto ◽  
Zulkarnain Jalil

The main obstacle which hinders the application of fuel cell fuels in motor vehicles today is the hydrogen storage tubes. One of the latest efforts in hydrogen storage research is to insert hydrogen in certain metals or called solid state hydrogen storage. Magnesium (Mg) is regarded as one of the material potential candidates absorbing hydrogen, because theoretically, it has the ability to absorb hydrogen in the large quantities of (7.6 wt%). This amount exceeds the minimum limit which is targeted Badan Energi Dunia (IEA), that is equal 5 wt%. However Mg has shortage, namely its kinetic reaction is very slow, it takes time to absorb hydrogen at least 60 minutes with very high operating temperatures (300-400 °C). The aim of this study is to improve the hydrogen desorption temperature hydrogen storage material based MgH2. In this method, milling of material is done in the time of 10 h with the variation of catalyst inserts a for 6wt%, 10wt% and 12 wt%. The results from XRD measurements in mind that the sample was reduced to scale nanocrystal. Phase that appears of the observation of result XRD is MgH2 phase as the main phase, and followed by Ni phase as minor phase. The result of observations with DSC, to the lowest temperature obtained on the sample with a weight of catalyst 12 wt% Ni catalyst that is equal to 376 °C. These results successfully repair pure temperature of Mg-based hydrides.


2021 ◽  
Vol 765 ◽  
pp. 138277
Author(s):  
Pingping Liu ◽  
Yafei Zhang ◽  
Xiangjun Xu ◽  
Fangming Liu ◽  
Jibiao Li

2012 ◽  
Vol 512-515 ◽  
pp. 1438-1441 ◽  
Author(s):  
Hong Min Kan ◽  
Ning Zhang ◽  
Xiao Yang Wang ◽  
Hong Sun

An overview of recent advances in hydrogen storage is presented in this review. The main focus is on metal hydrides, liquid-phase hydrogen storage material, alkaline earth metal NC/polymer composites and lithium borohydride ammoniate. Boron-nitrogen-based liquid-phase hydrogen storage material is a liquid under ambient conditions, air- and moisture-stable, recyclable and releases H2controllably and cleanly. It is not a solid material. It is easy storage and transport. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. An air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen and rapid kinetics (loading in <30 min at 200°C). Moreover, nanostructuring of Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. The Co-catalyzed lithium borohydride ammoniate, Li(NH3)4/3BH4 releases 17.8 wt% of hydrogen in the temperature range of 135 to 250 °C in a closed vessel. This is the maximum amount of dehydrogenation in all reports. These will reduce economy cost of the global transition from fossil fuels to hydrogen energy.


Sign in / Sign up

Export Citation Format

Share Document