minor phase
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 9 (8) ◽  
pp. 1637-1641
Author(s):  
Abhishek Abhishek

Introduction: Mrityunjaya Rasa is a Herbo-Mineral formulation, mentioned in Jwara Chikitsa along with various Anupana like Madhu, Aardraka Swarasa, and Jeeraka Kashaya with Guda. Ingredients like Shudha Hingula, Shudha Gandhaka, Shudha Vatsanabha, Shudha Tankana, Pippali and Maricha with properties of Tikta, Katu Rasa Teekshna Guna and Deepana-Pachana, Swedajanana, Yogavahi and Jwaraghna action show the significant result on various types of fever. To attain desired qualities in the finished product, it is much needed to check efficacy on modern parameters for standardization purposes. Thus, Mrityunjaya Rasa was subjected to X- ray diffraction spectroscopy to ensure SOPs followed for preparation. Aim: The study aimed to analyse the results of X-ray diffraction spectroscopy of Mrityunjaya Rasa. Materials and Methods: X-ray diffraction spectroscopy of Mrityunjaya Rasa was carried out at MIT–central instrumentation facility – innovation centre, Manipal, Udupi. Results: XRD study indicates that Mrityunjaya Rasa contains HgS (cinnabar), mercury sulphide in major phase and borax and elements Na, Ca, Mn, Mg, K, P, Zn, C, Cl2, Fe and B in minor phase. Conclusions: Mrityunjaya Rasa contains HgS (cinnabar), mercury sulphide in major phase and borax and other elements like Na, Ca, Mn, Mg, K, P, Zn, C, Cl2, Fe, and B are also present. Compounds and elements are present due to ingredients and Shodhana media which were used. This study can be a path for establishing the thumbprint of SOP for Mrityunjaya Rasa, a herbomineral compound formulation. Keywords: Mrityunjaya Rasa, XRD, HgS, S, Borax, Na, Ca, Mn etc.


2021 ◽  
Vol 36 (3) ◽  
pp. 287-296
Author(s):  
M. Nofar ◽  
M. Mohammadi ◽  
P. J. Carreau

Abstract Blends of a poly(butylene adipate-co-terephthalate) (PBAT) and a low density polyethylene (LDPE) (80 wt%/20 wt%) were prepared through a twin screw extruder while incorporating 3 wt% Cloisite 30B (C30B) nanoclay that possessed a much higher affinity with PBAT. The blends were processed through three melt mixing strategies: ( i) direct mixing of all three components, (ii) mixing C30B and PBAT followed by mixing with LDPE, and (iii) mixing C30B and LDPE followed by mixing with PBAT. The rheological properties of each system were determined in small amplitude oscillatory shear (SAOS) experiments. The migration of C30B nanoparticles from the LDPE minor phase towards the PBAT matrix was then monitored in the blend nanocomposites prepared through strategy (iii) via SAOS time sweep experiments. It was firstly understood that the C30B migration could be detected during time sweep SAOS experiments. The migration time was observed to be frequency dependent due to the smaller length scales probed at larger frequencies. Such migration occurred even faster when the SAOS time sweep experiments were conducted at a higher temperature due to the viscosity reduction.


2021 ◽  
Vol 60 (15) ◽  
pp. 5421-5431
Author(s):  
Luísa Barroso Gago ◽  
Mathilde Auclerc ◽  
Karim Delage ◽  
Nicolas Garois ◽  
Philippe Cassagnau ◽  
...  

Author(s):  
Sajad Ali ◽  
Fahad Nawaz ◽  
Yaseen Iqbal

To know about the nature of gangue associated with the ores, characterization has become an integral part in mineral processing and beneficiation, therefore, the as-mined iron ore collected from Karak region of KP has been characterized for its phase, microstructure and chemical composition via XRD, SEM and EDS respectively. Beneficiation of the iron ore has been carried out by shaking table and magnetic separator. XRD analysis confirmed the presence of iron oxide (Fe203) as the major phase along with quartz (Si02) as the minor phase. Finely grinded iron ore powder of 100 (149 µm) and 200 (74 µm) mesh sizes were passed via shaking table and magnetic separator subsequently. The iron ore was successfully upgraded from 28.27 wt.% to 36.51 wt.% at 100 mesh and 38.70 wt.% at 200 mesh via shaking table, thus achieving a maximum of 10% upgraded iron ore. The magnetic separator did not become so effective due to non- magnetic nature of hematite.    


2021 ◽  
Vol 348 ◽  
pp. 01009
Author(s):  
Fatima-Zahra Abir ◽  
Mohamed Mesnaoui ◽  
Younes Abouliatim ◽  
Lhbib Nibou ◽  
Youssef El Hafiane ◽  
...  

The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for alternative less polluting materials such as sulfo-aluminous cements (CSA). These binders, compared to ordinary Portland cements (OPC), have two advantages: reduction of the CO2 emissions and energy saving because the sintering temperature of CSA cements is much lower than ordinary cement (Portland). The aim of this work is to study the effect of iron oxide on the formation of the ye'elimite phase, which represents the main phase of (CSA).This study details the protocol for the chemical synthesis of ye’elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). The maximum ye’elimite content is reached at a sintering temperature of 1250°C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye’elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and its quantity becomes more important with the increase of the percentage of iron introduced in the synthesis. Finally, the electron microscopy allows to observe nanometric grains assembled in larger aggregates.


2021 ◽  
Author(s):  
S. Karvinen ◽  
◽  
A. Heinonen ◽  
C. Beier

This project focuses on the trace element chemistry of igneous apatite in various magmatic systems with the use of in situ analytical techniques. The composition of apatite may possibly be used as a tracer for various magmatic-hydrothermal processes due to the breadth of chemical substitutions possible within the structure. Apatite is found in many mineralized layered intrusions as a minor phase. Apatite may be utilized in the tracking of metasomatic fluids in layered intrusions or in geochronological studies in the absence of other commonly used phases i.e. zircon. Apatite accumulations can be exploited economically for phosphorus and possibly for rare earth elements as well.


2021 ◽  
Vol 1016 ◽  
pp. 1747-1752
Author(s):  
Liang Zheng ◽  
Guo Qing Zhang ◽  
Xiu Qing Xu ◽  
Zhou Li

The low carbon content powder metallurgy (PM) 625 alloy were manufactured by vacuum induction gas atomization (VIGA) and hot isostatically pressing (HIP) for marine-based application such as parts in the subsea Xmas tree. Corrosion experiment was performed in simulated deep seawater and subsea oil & gas service environment. The microstructures and properties of low carbon 625 alloy were comparably investigated with that of the as-cast alloy. The results indicated that the dendritic arm spacing (DAS) of the as-cast 625 alloy is 2 orders of magnitude higher than that of the powders, whereas the HIPed alloys possess a fine equiaxed grain structures without dendritic segregation and an average grain size of 14.5μm. No minor phase has been found beside the γ matrix in the original powders with different particle size. The tensile strength of low carbon PM 625 alloy is 26% higher than that of as-cast 625 alloy. PM 625 alloy possesses an excellent corrosion resistant in simulated deep seawater and oil & gas service environment for 30 days.


2020 ◽  
Vol 126 (10) ◽  
Author(s):  
Taranveer Kaur ◽  
Shivani Punj ◽  
Ravindra Kumar ◽  
Kulvir Singh

2020 ◽  
Vol 31 (19) ◽  
pp. 16983-16990
Author(s):  
Nurul Auni Khalid ◽  
Mohd Mustafa Awang Kechik ◽  
Nur Atikah Baharuddin ◽  
Chen Soo Kien ◽  
Hussein Baqiah ◽  
...  

Abstract The effects of carbon nanofibers addition on transport and superconducting properties of YBa2Cu3O7−δ (Y-123) superconductor were studied. Y-123 was prepared using co-precipitation method for good quality bulk of high temperature superconducting material. Carbon nanofibers with 0.2–0.8 wt% were added into Y-123 superconductors. The samples were characterized using electrical resistance measurement for critical temperature (Tc) and critical current density (Jc), powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis. Most of the samples indicated a dominant Y-123 phase of an orthorhombic structure with a minor phase of BaCO3 and Y-124. Onset critical temperature was found to decrease from 90.5 to 80 K with increasing of carbon nanofibers concentration. The Jc for pure sample is 11 A/cm2 at 30 K while the Jc of sample with 0.4 wt% carbon nanofibers is 830 A/cm2 at 30 K. Introduction of carbon nanofibers enhanced Jc significantly. However, further addition of carbon nanofibers in Y-123 superconductor caused degradation in Jc.


2020 ◽  
Vol 313 ◽  
pp. 113285 ◽  
Author(s):  
Lili Tian ◽  
Yinli Peng ◽  
Xiaowei Lei ◽  
Wenjing Yao ◽  
Meng'en Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document