scholarly journals Integrated Model of a Power Supply System with Distributed Generation

Author(s):  
Aleksandra Varganova ◽  
◽  
2019 ◽  
Vol 114 ◽  
pp. 05007 ◽  
Author(s):  
Felix Byk ◽  
Yana Frolova ◽  
Ludmila Myshkina

The existing centralized power supply system has the alternative due to distributed generation. By certain conditions distributed cogeneration allows to increase the reliability and quality of power supply and to reduce the cost of electricity for consumers. Therefore, a lot of energy-intensive consumers switched to their own power supply systems, as it turned out to be a competitive technical solution. The total gasification of the country’s regions and the presence of domestic manufacturers of gas turbine and gas piston power plants accelerated this process. Nowadays local power systems are emerging with cogeneration plants are the main source of heat and electricity there. The feasibility justification of the kind and type of generation is determined by many factors, including circuit-mode parameters in the local power system and adjacent network. Local power systems based on the principles of self-balance are proposed to name as energy cells. The integration of energy cells with regional power system increases the technical and economic effectiveness of power supply system for consumers. The proposed power systems transition leads to certain systemic effects. Received effects are depending on functions of distributed generation. This paper explores the impact of scheme and mode factor on the technical effects.


2021 ◽  
Vol 10 (3) ◽  
pp. 70-84
Author(s):  
Yuliia Daus ◽  
Valeriy Kharchenko ◽  
Igor Yudaev

The increasing penetration of photovoltaic technology calls for the development of an effective method for optimization of grid-connected photovoltaic power plants. Although extensive studies on the definition, implementation, and optimization of these systems have been conducted, the design and management of a smart energy system remains a critical challenge. The purpose of the work is to increase efficiency of power supply system of agricultural facility by optimizing the placement and selection of parameters of photovoltaic sources of distributed generation. Application of photovoltaic sources of distributed generation as part of power supply system of agricultural enterprise allows to reduce the total consumption from the network in average basing on solar intensity data for 22 years by 40-53% from April to October, which is most expedient in view of the fact that this is a period of intensive work of the enterprise and the greatest load on its consumers; by 24-30% in February, March, and October; and by 14-17% the rest of the time.


Author(s):  
Yuri N. Bulatov ◽  
Andrey V. Kryukov ◽  
Konstantin V. Suslov

The article discusses the power supply system of an industrial enterprise, which included a turbine generator plant operating on the basis of a synchronous generator equipped with predictive voltage and rotor speed controllers, as well as a high-power electric energy storage device. A description of the models of this plant, predictive controllers and energy storage, as well as the results of modeling when the system goes into an isolated mode of operation are given. Simulation was performed in MATLAB environment using Simulink and SimPowerSystems packages. The purpose of the work was to study the behavior of the proposed predictive controllers during the transition of the power supply system to the island (isolated) mode. Based on the results of computer simulation, it was concluded that the use of predictive controllers improves the damping properties of the system. The use of an energy storage device that is automatically connected to the network when the voltage drops, allows to reduce the overvoltage at the terminals of the generator during its unloading, as well as to reduce the required mechanical power on the turbine shaft in comparison with a permanently connected device. Predictive controllers can be recommended to increase the stability of distributed generation plants when switching to an isolated mode. It is advisable to conduct further research in the direction of creating algorithms for coordinated operation of controllers


2021 ◽  
Vol 25 (5) ◽  
pp. 568-585
Author(s):  
Yu. N. Bulatov

The paper determines the effect of proposed joint voltage and frequency predictive controllers for distributed generation (DG) plants on quality indicators characterizing the control process in different operating modes of power supply systems. The studies are conducted in the MatLab environment (Simulink and SimPowerSystems simulation packages) employing control engineering methods. It is proposed to design and adjust joint predictive controllers by determining the resonant frequency of oscillations for the master generator rotor. This approach provides better quality indicators of voltage and frequency control in power supply systems while maintaining the same settings for the controllers of DG plants. With an additional load in an isolated power supply system, the maximum voltage sag is found to be 1.75 times lower than for local predictive control and 3.5 times lower as compared to the use of conventional controllers. For the specified mode, predictive controllers enable a threefold reduction in the transient time between rotor rotational speeds in a synchronous generator. In the start mode of a powerful electric motor, the predictive controllers of synchronous generators in the power supply system enable a 1.5 times reduction in voltage sag, with a 1.4 times reduction in overvoltage following its start. In the case of a short-term three phase short-circuit, joint predictive controllers allow a 1.5 times decrease in transient time and a 2.3 times decrease in the overshoot of power line frequency as compared to local control. In addition, frequency oscillation in the power system is also reduced. Similar effects are observed in other operating modes of the considered power supply systems equipped with DG plants. The performed dynamic simulation confirms the effectiveness of using joint voltage and frequency predictive controllers for DG plants, which consists in a positive impact on the quality of processes involved in controlling the parameters of power supply systems in various operating modes.


2019 ◽  
Vol 294 ◽  
pp. 01014 ◽  
Author(s):  
Viktor Sychenko ◽  
Valeriy Kuznetsov ◽  
Yevheniy Kosarev ◽  
Petro. Beh ◽  
Yuriy Sayenko ◽  
...  

The growing shortage of energy resources to provide heavy traffic and high-speed traffic necessitates the development of a new power supply scheme for a traction network using sources of distributed generation of electric energy. Application of asymmetric distributed traction power system with the use of distributed generation allows to increase electric energy efficiency of the feed system of rolling stock, reduce its material capacity and increase the reliability of the functioning of the railway system as a whole. The proposed structure of the hybrid electric traction system involves the creation of a new paradigm aimed at ensuring high demands on the voltage and specific power in the traction network, which will allow to improve the quality and safety of the transportation process when increasing the energy performance indicators. This paradigm will allow to form a new philosophy of building traction power systems. The key elements of this philosophy are decentralization of generation and consumption of electric energy, the use of intelligent electric equipment, distributed power supply management in a single information space of the energy process during transportation. The peculiarity of the proposed work is the optimal combination of technological processes of transmission, consumption of electric energy and transportation, taking into account the specific conditions of functioning of the electrified section: points of connection of power sources and their type, profile of the track, schedule of trains, types of rolling stock and equipment. Conceptually, the hybrid traction power system is an electric hub, in which the inputs are generating points, and the output is the power supply system of the rolling stock. The internal structure of the electric power objects of the hub is determined by the type of transformation and accumulation of electric energy and ways of managing these objects in real time.


2019 ◽  
Vol 114 ◽  
pp. 04004 ◽  
Author(s):  
Yu.N. Bulatov ◽  
A.V. Kryukov ◽  
Nguyen Van Huan

Currently, energy generation industry transition to a new technological platform based on smart electrical energy systems (EES) is underway, with EES equipped with active-adaptive mains. This platform involves a large-scale use of digital devices and significant electrical energy (EE) generation using distributed generation (DG) plants which are to be created by power consumers. These plants can operate as parts of existing grids, or be pooled in network clusters. To implement smart EES, the development of new approaches is required for production, distribution and EE consumption modes management. The article is dedicated to the issues of DG plants application to raise efficiency of non-traction consumers power supply systems. In this case, a special attention was paid to enhancing the electrical energy quality via application of the DG plant which is controlled by concordantly set generator automatic voltage regulator (AVR) and automatic speed governor (ASG). For optimization and harmonization of AVR and ASG settings a method of nonparametric identification of the ‘turbine-generator’ system was used which can be represented as complex activation functions of main channels and crosslinks of regulators and the generator. The study was carried out in Matlab environment on a created railroad power supply system model. The studies conducted helped to detect that application of DG plants with concordantly set AVR and ASG makes it possible to enhance power quality for non-traction consumers and ensure dynamic stability and resilience of railroad line power supply system.


Sign in / Sign up

Export Citation Format

Share Document