SOIL EROSION MAPPING OF WATERSHED IN MIRZAPUR DISTRICT USING RUSLE MODEL IN GIS ENVIRONMENT

Author(s):  
Deepanshu Agarwal ◽  
Kunal Tongaria ◽  
Siddhartha Pathak ◽  
Anurag Ohri ◽  
Medha Jha

Soil erosion is one of the serious issues threatening the environment. It is a growing problem especially in areas of agricultural activity where soil erosion not only leads to de-creased agricultural productivity but also reduces water availability. This leads to drastic degradation of the agricultural lands. So there is a need to take up conservation and management measures which can be applied to check further soil erosion. Universal Soil Loss Equation (USLE) is the most popular empirically based model used globally for erosion prediction and control. Remote sensing and GIS techniques have become valuable tools for the digitization of the input data and genereation of maps. In the present study, RUSLE model has been adopted to estimate the soil erosion in the Khajuri watershed of Uttar Pradesh, India. This model involves calculation of parameters including runoff-rainfall erosivity factor (R), soil erodability Factor (K), topographic factor  (LS), cropping management factor (C), and support practice factor (P). Layer wise thematic maps of each of these factors were generated using GIS platform using various data sources and data preparation methods. The results of the study indicate that the annual average soil loss within the watershed is about  t/ha/yr (metric ton per hectare per year).

2021 ◽  
Author(s):  
Habtamu Tamiru ◽  
Meseret Wagari

Abstract Background: The quantity of soil loss as a result of soil erosion is dramatically increasing in catchment where land resources management is very weak. The annual dramatic increment of the depletion of very important soil nutrients exposes the residents of this catchment to high expenses of money to use artificial fertilizers to increase the yield. This paper was conducted in Fincha Catchment where the soil is highly vulnerable to erosion, however, where such studies are not undertaken. This study uses Fincha catchment in Abay river basin as the study area to quantify the annual soil loss, where such studies are not undertaken, by implementing Revised Universal Soil Loss Equation (RUSLE) model developed in ArcGIS version 10.4. Results: Digital Elevation Model (12.5 x 12.5), LANDSAT 8 of Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Annual Rainfall of 10 stations (2010-2019) and soil maps of the catchment were used as input parameters to generate the significant factors. Rainfall erosivity factor (R), soil erodibility factor (K), cover and management factor (C), slope length and steepness factor (LS) and support practice factor (P) were used as soil loss quantification significant factors. It was found that the quantified average annual soil loss ranges from 0.0 to 76.5 t ha-1 yr-1 was obtained in the catchment. The area coverage of soil erosion severity with 55%, 35% and 10% as low to moderate, high and very high respectively were identified. Conclusion: Finally, it was concluded that having information about the spatial variability of soil loss severity map generated in the RUSLE model has a paramount role to alert land resources managers and all stakeholders in controlling the effects via the implementation of both structural and non-structural mitigations. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss quantification that can help for protection practices.


2020 ◽  
Vol 46 (2) ◽  
pp. 75-82
Author(s):  
Suraj Shaikh ◽  
Masilamani Palanisamy ◽  
Abdul Rahaman Sheik Mohideen

Soil erosion and soil loss is one of the common problems threatening the environment. This degrading phenomenon declines the soil fertility and significantly affects the agricultural activity. As a consequence, the productivity of soil is affected unquestionably. In this reason, there is a basic need to take up conservation and management measures which can be applied to check further soil erosion. Even though, soil erosion is a mass process spread cross the watershed, it is not economically viable to implement conservation techniques to the entire watershed. However, a method is a pre-requisite to identify the most vulnerable areas and quantify the soil erosion. In this study, Revised Universal Soil Loss Equation (RUSLE) has been accepted to estimate soil erosion in the Kummattipatti Nadi watershed part of the Coimbatore district of Tamil Nadu, India. This model has several parameters including runoff-rainfall erosivity factor (R), soil erodability Factor (K), topographic factor (LS), cropping management factor (C), and support practice factor (P). All these layers are prepared through geographical information system (GIS) by using various data sources and data preparation methods. The results of the study shows that the annual average soil loss within the watershed is about 6 t/ha/yr (metric ton per hectare per year). Higher soil erosion is observed in the land use classes of gullied wasteland, open scrub forest and degraded plantation. The soil erosion risk is extremely higher on the steep slopes and adjoining foothills. The proper conservation and management strategies has to be implement in this watershed for the development.


2021 ◽  
Vol 58 (02) ◽  
pp. 177-191
Author(s):  
Ashwini Suryawanshi ◽  
Anupam Kumar Nema ◽  
Rahul Kumar Jaiswal ◽  
Sukant Jain ◽  
Saswat Kumar Kar

Soil erosion is caused due to the dynamic action of erosive agents, mainly water, and is a major threat to the environment. Primary aim of the present study was to study the soil loss dynamics, and identify the environmental hotspots in Madhya Pradesh to aid decision-makers to plan and prioritize appropriate conservation measures. Universal Soil Loss Equation (USLE) and Revised Universal Soil Loss Equation (RUSLE) models were applied for erosion rate estimation by generating thematic maps of R (Rainfall erosivity factor), K (Soil erodibility factor), LS (Topographic factor), C (Cover and management factor), and P (Support practice factor) factors by using several input parameters in QGIS software. Subsequently, the different classes of soil erosion and percentage area under these classes were identified. The average annual soil erosion for the entire state as obtained from the USLE and RUSLE model were 5.80 t.ha-1.yr-1 and 6.64 t.ha-1.yr-1, respectively. The areas under severe risk were 1.09 % and 1.80 %, and very severe risk areas were 1.57 % and 1.83 % as estimated by USLE and RUSLE model, respectively. As compared to RUSLE model, USLE model underestimated rate of soil erosion for most river basins of the state as well as for the entire state


Author(s):  
R. V Byizigiro ◽  
G Rwanyiziri ◽  
M. Mugabowindekwe ◽  
C. Kagoyire ◽  
M. Biryabarema

The problem of soil erosion in Rwanda has been highlighted in previous studies. They have shown that half of the country’s farmland suffers moderate to severe erosion, with the highest soil loss rates found in the steeper and highly rainy northern and western highlands of the country. The purpose of this study was to estimate soil loss in Satinskyi, one of the catchments located in Ngororero District of Western Rwanda. This has been achieved using the Revised Universal Soil Loss Equation (RUSLE) model, which has been implemented in a Geographic Information Systems (GIS) environment. The methods consisted of preparing a set of input factor layers including Slope Length and Steepness (LS) factor, Rainfall Erosivity (R) factor, Soil Erodibility (K) factor, Support Practice (P) factor, and Land Surface Cover Management Factor (C) factor, for the model. The input factors have been integrated for soil loss estimates computation using RUSLE model, and this has enabled to quantitatively assess variations in the mean of the total estimated soil loss per annum in relation to topography and land-use patterns of the studied catchment. The findings showed that the average soil loss in Satinskyi catchment is estimated at 38.4 t/ha/year. It was however found that about 91% of the study area consists of areas with slope angle exceeding 15°, a situation which exposes the land to severe soil loss rates ranging between 31 t/ha/year and 41 t/ha/year. Apart from the steep slope, changes in land use also contribute to high rates of soil loss in the catchment. Keywords: Soil Erosion Estimation, GIS, RUSLE, Satinskyi Catchment, Rwanda


2021 ◽  
Vol 14 ◽  
pp. 117862212110462
Author(s):  
Meseret Wagari ◽  
Habtamu Tamiru

In this study, Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) platforms were successfully applied to quantify the annual soil loss for the protection of soil erosion in Fincha catchment, Ethiopia. The key physical factors such as rainfall erosivity ( R-factor), soil erodibility ( K-factor), topographic condition (LS-factor), cover management ( C-factor), and support practice ( P-factor) were prepared in GIS environment from rainfall, soil, Digital Elevation Model (DEM), Land use/Land cover (LULC) respectively. The RUSLE equation was used in raster calculator of ArcGIS spatial tool analyst. The individual map of the derived factors was multiplied in the raster calculator and an average annual soil loss ranges from 0.0 to 76.5 t ha−1 yr−1 was estimated. The estimated annual soil loss was categorized based on the qualitative and quantitative classifications as Very Low (0–15 t ha−1 yr−1), Low (15–45 t ha−1 yr−1), Moderate (45–75 t ha−1 yr−1), and High (>75 t ha−1 yr−1). It was found from the generated soil erosion severity map that about 45% of the catchment area was vulnerable to the erosion with an annual soil loss of (>75 t ha−1 yr−1), and this demonstrates that the erosion reduction actions are immediately required to ensure the sustainable soil resources in the study area. The soil erosion severity map generated based on RUSLE model and GIS platforms have a paramount role to alert all stakeholders in controlling the effects of the erosion. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss protection practices.


Author(s):  
Habtamu Tamiru ◽  
Meseret Wagari

The quantity of soil loss as a result of soil erosion is dramatically increasing in catchment where land resources management is very weak. In this paper, a RUSLE model-based soil loss quanti-fication technique is presented to estimate the annual soil loss and identify the severity of the erosion in the catchment. This study uses Fincha catchment in Abay river basin as the study area to quantify the annual soil loss by implementing Revised Universal Soil Loss Equation (RUSLE) model developed in ArcGIS version 10.4. Digital Elevation Model (12.5 x 12.5), LANDSAT 8 of Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Annual Rainfall of 10 stations and soil maps of the catchment were used as input parameters to generate the significant factors. Rainfall erosivity factor (R), soil erodibility factor (K), cover and management factor (C), slope length and steepness factor (LS) and support practice factor (P) were used as soil loss quantification significant factors. A model builder for the RUSLE model was developed and raster map calcula-tion algebra was applied in ArcGIS version 10.4 to quantify the total annual soil loss. It was found that the quantified average annual soil loss ranges from 0.0 to 76.5 t ha-1 yr-1 was obtained in the catchment. The area coverage of soil erosion severity with 55%, 35% and 10% as low to moderate, high and very high respectively were identified. The information about the spatial variation of soil loss severity map generated in RUSLE model has a paramount role to alert land resources man-agers and all stakeholders in controlling the effects via implementation of both structural and non-structural mitigations. The results of the RUSLE model can also be further considered along with the catchment for practical soil loss quantification that can help for protection practices.


2020 ◽  
Vol 4 (1) ◽  
pp. 15-22
Author(s):  
Kamel Khanchoul ◽  
Kaouther Selmi ◽  
Kaddour Benmarce

In Algeria, soil erosion has experienced a spectacular extension, it is therefore imperative to assess the effects of this phenomenon. The purpose of this study is to assess soil loss rate using a GIS/USLE approach at the Mellegue watershed, northeast of Algeria. Geographic Information System techniques have been adopted to process data obtained at the study watershed, of reasonable spatial mapping, for the application of the RUSLE model. The model is a multiplication of the five erosion factors, namely rainfall erosivity, soil erodibility, slope and length of slope, plant cover and anti-erosion practices. Each of these factors has been expressed as a thematic map. The resulting soil loss map, with mean erosion rate of 20.40 T/ha/year, shows very low erosion (≤ 7 T/ha/year) which covers 64.60% of the total area of the basin, and very high erosion (> 60 T/ha/year) which does not exceed 4.80% of the basin area. The results indicate that Chabro and downstream Mellegue sub-watersheds face the greatest risk of soil erosion compared to Meskiana sub-basin, with contributions of 14.20 % and 12.90 % of their basin areas respectively. This is mainly due to natural factors and anthropogenic activities without appropriate conservation practices of agricultural land.


Author(s):  
N. W. Ingole ◽  
S. S. Vinchurkar

The catchment boundary of Indla Ghatkhed watershed covers an area about 14..62 sq km. The erosion is a natural geomorphic process occurring continually over the earth’s surface and it largely depends on topography, vegetation, soil and climatic variables and, therefore, exhibits pronounced spatial variability due to catchments heterogeneity and climatic variation. This problem can be circumvented by discrediting the catchments into approximately homogeneous sub-areas using Geographic Information System (GIS). Soil erosion assessment modeling was carried out based on the Revised Universal Soil Loss Equation (RUSLE). A set of factors are involved in RUSLE equation are A = Average annual soil loss (mt/ha/year), R = Rainfall erosivity factor (mt/ha/year), k = Soil erodibility factor, LS = Slope length factor, C = Crop cover management factor, P = Supporting conservation practice factor. These factors extracted from different surface features by analysis and brought in to raster format. The output depicts the amount of sediment rate from a particular grid in spatial domain and the pixel value of the outlet grid indicates the sediment yield at the outlet of the watershed.


2014 ◽  
Vol 49 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Daniel Fonseca de Carvalho ◽  
Valdemir Lucio Durigon ◽  
Mauro Antonio Homem Antunes ◽  
Wilk Sampaio de Almeida ◽  
Paulo Tarso Sanches de Oliveira

The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.


2020 ◽  
Vol 4 (2) ◽  
pp. 70-78
Author(s):  
Khanchoul K. ◽  
Balla F. ◽  
Othmani O.

Soil erosion by water is one of the major sources of land degradation. Erosion contributes to the temporary or permanent lowering of the productive capacity of agricultural land and sedimentation of dams. The purpose of this study is to assess soil loss rate using a GIS/RUSLE approach at the Chemorah basin by focusing on two catchments, namely, Reboa and Soultez. The assessment of soil erosion aims thus to identify the lands more prone to erosion which are vital for erosion management process. RUSLE model supported by GIS software is to predict the spatial variability of erosion occurring in the Chemorah basin and its sub-basins. Five inputs such as rainfall erosivity, soil erodibility, slope and length of slope, plant cover and anti-erosion practices, are used in the model to compute the erosion loss rates. The mean annual soil loss in Chemorah river basin is estimated at 7.52 T/ha/year, and varying between 3.78 T/ha/year in Soultez catchment and 6.06 T/ha/year in Reboa sub-basin. The study shows that low erosion (≤ 7 T/ha/year) covers 52% and high to very high erosion (> 7 T/ha/year) which does not exceed 23% of the Chemorah basin area. The results indicate that Reboa catchment faces the greatest risk of soil erosion compared to Soultez one, with contributions of 44 % and 32 % of their basin areas respectively. Use of the erosion factors’ information coupled with GIS/RUSLE program can help to design the appropriate land management to minimize soil erosion in the basin.


Sign in / Sign up

Export Citation Format

Share Document