scholarly journals ASSESSMENT AND MAPPING OF RAINFALL EROSIVITY INDEX (R) FOR MAJHA REGION, PUNJAB IS A STATE IN NORTHERN, INDIA

Author(s):  
Prashant Kumar

Purpose: This study gives a critical assessment of the rainfall erosivity factor (R) for selected sites in the Majha region, representing different locations use of mean monthly rainfall data.  Methodology: By applying empirical methods, the rainfall intensity for all the locations were obtained and was further determined at three different intervals of 30-minutes, 45-minutes and 60-minutes, respectively. The rainfall erosivity factor (R) was calculated by the revised universal soil loss equation (RUSLE). Main Findings: Using RUSLE, the rainfall erosivity factor (R) for each of the locations was measured as follows; EI = 3878.49 (MJmmha-1hr-1), EI = 4013.71 (MJmmha-1hr-1), EI = 4302.24 (MJmmha-1hr-1) for Majha region of Amritsar, Tarntaran and Pathankot respectively. A close observation of the data obtained revealed that as rainfall intensity increased with the duration, the rainfall erosivity index reduced or decreased. Implications of study: Nevertheless, it is expected that if proper cover crop and management practices are applied despite the region, the study area falls within, rainfall erosivity can be cushioned, thus reducing further erosion tendencies and enhancing food production chances from productive lands within the area. The novelty of study: The rainfall erosivity factor (R) was calculated by the revised universal soil loss equation (RUSLE).

Author(s):  
Hammad Gilani ◽  
Adeel Ahmad ◽  
Isma Younes ◽  
Sawaid Abbas

Abrupt changes in climatic factors, exploitation of natural resources, and land degradation contribute to soil erosion. This study provides the first comprehensive analysis of annual soil erosion dynamics in Pakistan for 2005 and 2015 using publically available climatic, topographic, soil type, and land cover geospatial datasets at 1 km spatial resolution. A well-accepted and widely applied Revised Universal Soil Loss Equation (RUSLE) was implemented for the annual soil erosion estimations and mapping by incorporating six factors; rainfall erosivity (R), soil erodibility (K), slope-length (L), slope-steepness (S), cover management (C) and conservation practice (P). We used a cross tabular or change matrix method to assess the annual soil erosion (ton/ha/year) changes (2005-2015) in terms of areas and spatial distriburtions in four soil erosion classes; i.e. Low (<1), Medium (1–5], High (5-20], and Very high (>20). Major findings of this paper indicated that, at the national scale, an estimated annual soil erosion of 1.79 ± 11.52 ton/ha/year (mean ± standard deviation) was observed in 2005, which increased to 2.47 ±18.14 ton/ha/year in 2015. Among seven administrative units of Pakistan, in Azad Jammu & Kashmir, the average soil erosion doubled from 14.44 ± 35.70 ton/ha/year in 2005 to 28.03 ± 68.24 ton/ha/year in 2015. Spatially explicit and temporal annual analysis of soil erosion provided in this study is essential for various purposes, including the soil conservation and management practices, environmental impact assessment studies, among others.


2019 ◽  
Vol 12 (3) ◽  
pp. 859
Author(s):  
Joaquim Pedro de Santana Xavier ◽  
Alexandre Hugo Cezar Barros ◽  
Daniel Chaves Webber ◽  
Luciano José de Oliveira Accioly ◽  
Flávio Adriano Marques ◽  
...  

Dentre os diversos métodos indiretos para estimar as perdas de solo por erosão, a Equação Universal de Perdas de Solo (EUPS) é a mais utilizada devido a sua robustez e por ser constituída de uma simples estrutura fatorial, que integra fatores naturais e antrópicos atuantes na perda de solos. A erosão é um dos fenômenos mais danosos ao solo e às atividades humanas e por isso seu estudo é importante. Para o cálculo das perdas de solo por meio da EUPS, a avaliação da erosividade das chuvas (fator R) é essencial, pois estima o fenômeno produzido pelas chuvas. O objetivo deste trabalho foi avaliar três metodologias disponíveis de obtenção da erosividade das chuvas para a região do semiárido pernambucano, avaliando sua influência nos resultados da EUPS. Os três modelos selecionados para estimar o Fator R foram desenvolvidos por Wischmeier e Smith (mais conhecido e utilizado), por Silva que estimou valores para diversas regiões do País e por Cantalice e outros que trabalharam especificamente para cada região climática do estado de Pernambuco. Os resultados indicam que as metodologias de Wischmeier e Smith e Silva obtiveram resultados de erosividade da chuva semelhantes, tendo Silva alcançado valores maiores. Cantalice e outros obtiveram os resultados mais baixos. Os resultados da EUPS indicam que, quantitativamente, os diferentes fatores R geram grande diferença nas perdas de solo, porém, qualitativamente chegam a resultados semelhantes na classificação de áreas de maior erosão, de acordo com a FAO. Logo, as três metodologias são viáveis na identificação de áreas prioritárias para a mitigação da erosão.   A B S T R A C TAmong several indirect methods to estimate soil erosion loss, the Universal Soil Loss Equation (EUPS) is the most used due to its robustness and because it is constituted of a simple factorial structure that integrates natural and anthropic factors which act in the loss of soils. Erosion is one of the most damaging phenomena to the soil and the human activities, evidencing the importance of studying it. The evaluation of rainfall erosivity (R factor) is essential for the calculation of soil loss through the EUPS, since it is possible to estimate how significant rainfall is to the occurrence of this phenomenon. The objective of this work was to evaluate three methodologies to obtain the rainfall erosivity available for the semi - arid region of Pernambuco, evaluating its influence on the results of the EUPS. The three models used to estimate the R-factor were developed by Wischmeier and Smith, the best known and used model, Silva who estimated values for several regions of the country and Cantalice and others who worked specifically for each climatic region of the state of Pernambuco. As a result, very similar results of rainfall erosivity were obtained between Wischmeier and Smith´s and Silva´s methodology, with Silva reaching higher values of energy amplitude, while Cantalice and others obtained the lowest results. The results of EUPS indicate that, quantitatively, the different R factors generate a large difference in soil loss, but qualitatively they reach similar results in the classification of areas where erosion are greater, according to the FAO. Therefore, the three methodologies are feasible in the identification of priority areas for erosion mitigation.Keywords: soil, rainfall erosivity, USLE, GIS


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Chandra Sekhar Matli ◽  
Nimmy John

Soil loss from watersheds significantly influences the fertility soils and natural environment and hence it is a serious concern across the globe. Soil conservation is the top priority in watershed management though it is impractical to completely control soil erosion from all parts of watershed and hence achieve soil conservation. As controlling soil erosion in watersheds at micro level is difficult, broad measures which are economical and feasible are recommended for soil conservation. In order to plan suitable conservation techniques, it is essential to prioritize watersheds based on vulnerability to soil erosion. For identifying suitable soil conservation methods, it is necessary to consider critical erosion zones, threats to lives and property, socio-economic constraints and local challenges. Assessment of soil erosion is very important for arriving at the prioritization of watersheds for soil conservation. This paper reports the findings of the study carried out on Janagoan Mandal in Warangal District with hell of GIS techniques. Estimation of soil loss from the watershed is estimated using Universal Soil Loss Equation (USLE). Using the data available with various agencies, average annual erosion is estimated by developing GIS maps for six major watershed parameters. The watershed has been divided into sub watersheds and prioritization study is carried out considering factors that influence soil erosion. Using GIS tool and Universal Soil Loss Equation (USLE), the soil loss from the watershed is estimated and high risk zones are demarked. Soil loss from 80% of the watershed area is in the range of 0 - 200 tons/ha/year, while the high risk zones of erosion are about 12% of the area. Watershed management practices are recommended to reduce the soil loss from the high risk zones.


2018 ◽  
Vol 147 ◽  
pp. 03003
Author(s):  
Dina PA Hidayat ◽  
Sih Andajani

Land erosion is the impact of increasing runoff discharge and land use conversion to impervious areas. Land erosion usually calculated by formula called USLE (Universal Soil Loss Equation) then modified as MUSLE (Modified Universal Soil Loss Equation). These formula calculate average annual soil loss in tons/areas depends on rainfall erosivity (R), soil erodibility factor (K), topographic factor (LS), cropping and conservation factor (CP). GIS (Geographic Information System) is a system designed to capture, manipulate, and analyze spatial/geographic data. There are some tools related water resources analysis in ArcGIS such as: watershed analysis and also have a tools for user to create their own model called model builder. This research was aim to create a model to calculate land erosion using MUSLE formula by model builder in ArcGIS. The output for this research is the model which can be used to calculate annual soil loss in watershed area based on GIS systems. For the model trial and case study, we use Citepus watershed located on Bandung West Java, that has 5 river branches: Cibogo, Cikakak, Cilimus, Cipedes and Ciroyom. As the result of the model, the value of average annual soil loss in Citepus watershed can be calculated automatically by developed model.


2021 ◽  
Vol 1 (2) ◽  
pp. 62-73
Author(s):  
Hui Yee Ngieng ◽  
Leong Kong Yong ◽  
Striprabu Strimari

Because of human activities, soil erosion has been one of the most concerning issues in Malaysia in the past decades. This study aimed to estimate the amount of soil loss and sediment yield at Curtin University, Malaysia by using the Revised Universal Soil Loss Equation (RUSLE) and the Modified Universal Soil Loss Equation (MUSLE), respectively. The parameters of RUSLE include rainfall erosivity factor (R), soil erodibility factor (K), slope length factor (L), slope steepness factor (S), cover-management factor (C) and support practice factor (P). The rainfall data (10 years) from the Sarawak Meteorological Department was used to determine the R-factor. The K-factor was determined by sieve analysis, hydrometer analysis, the Standard Proctor Test (SPT), and organic content testing. The L-and S-factors were performed by measuring on site and using Google Earth. The C-and P-factors were based on the ground surface cover condition (bare soil in this study). In the MUSLE, the runoff factor comprises V and Qp, while the other parameters are the same as in the RUSLE. The runoff depth, V, is equivalent to the rainfall intensity. Rainfall intensities were recorded by using a rain gauge. The highest rainfall intensity was used for runoff depth. The Rational method has been utilized to calculate Qp. The amount of soil loss estimated was 119.97 tons/ha/year and the sediment yield amount estimated was 0.76 ton/storm event in Curtin University, Malaysia.


Soil Research ◽  
2003 ◽  
Vol 41 (5) ◽  
pp. 991 ◽  
Author(s):  
P. I. A. Kinnell

Analyses undertaken in this paper show that the Universal Soil Loss Equation (USLE) tends to overestimate low values of soil loss when the soil surface has a high capacity to infiltrate rainfall, but the degree of overestimation falls as the capacity of the soil to produce runoff increases. The USLE-M, a version of the USLE that uses the product of the runoff ratio and the EI30 as the event erosivity index, is more efficient in estimating soil loss because runoff is considered explicitly in the event erosivity index, whereas it is not in the USLE. The results show clearly that the problem of the USLE and the RUSLE overpredicting observed erosion losses, when erosion losses are low, is related to a large degree to model formula. In addition, the removal of restrictions to what constitutes a valid EI30 value increases the capacity of the RUSLE to overpredict low soil losses. As the USLE is an empirical model, values of USLE K, C, and P can only be used when the event erosivity parameter is EI30. Models like EPIC ignore this fact.


2021 ◽  
Vol 58 (02) ◽  
pp. 177-191
Author(s):  
Ashwini Suryawanshi ◽  
Anupam Kumar Nema ◽  
Rahul Kumar Jaiswal ◽  
Sukant Jain ◽  
Saswat Kumar Kar

Soil erosion is caused due to the dynamic action of erosive agents, mainly water, and is a major threat to the environment. Primary aim of the present study was to study the soil loss dynamics, and identify the environmental hotspots in Madhya Pradesh to aid decision-makers to plan and prioritize appropriate conservation measures. Universal Soil Loss Equation (USLE) and Revised Universal Soil Loss Equation (RUSLE) models were applied for erosion rate estimation by generating thematic maps of R (Rainfall erosivity factor), K (Soil erodibility factor), LS (Topographic factor), C (Cover and management factor), and P (Support practice factor) factors by using several input parameters in QGIS software. Subsequently, the different classes of soil erosion and percentage area under these classes were identified. The average annual soil erosion for the entire state as obtained from the USLE and RUSLE model were 5.80 t.ha-1.yr-1 and 6.64 t.ha-1.yr-1, respectively. The areas under severe risk were 1.09 % and 1.80 %, and very severe risk areas were 1.57 % and 1.83 % as estimated by USLE and RUSLE model, respectively. As compared to RUSLE model, USLE model underestimated rate of soil erosion for most river basins of the state as well as for the entire state


2018 ◽  
Vol 2 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Ajaykumar Kadam ◽  
B. N. Umrikar ◽  
R. N. Sankhua

A comprehensive methodology that combines Revised Universal Soil Loss Equation (RUSLE), Remote Sensing data and Geographic Information System (GIS) techniques was used to determine the soil loss vulnerability of an agriculture mountainous watershed in Maharashtra, India. The spatial variation in rate of annual soil loss was obtained by integrating raster derived parameter in GIS environment. The thematic layers such as TRMM [Tropical Rainfall Measuring Mission] derived rainfall erosivity (R), soil erodibility (K), GDEM based slope length and steepness (LS), land cover management (C) and factors of conservation practices (P) were calculated to identify their effects on average annual soil loss. The highest potential of estimated soil loss was 688.397 t/ha/yr. The mean annual soil loss is 1.26 t/ha/yr and highest soil loss occurs on the main watercourse, since high slope length and steepness. The spatial soil loss maps prepared with RUSLE method using remote sensing and GIS can be helpful as a lead idea in arising plans for land use development and administration in the ecologically sensitive hilly areas.


Sign in / Sign up

Export Citation Format

Share Document