scholarly journals Comparing the Spatio-Temporal Variability of Remotely Sensed Oceanographic Parameters between the Arabian Sea and Bay of Bengal throughout a Decade

2016 ◽  
Vol 110 (4) ◽  
pp. 627 ◽  
Author(s):  
Sourav Das ◽  
Abhra Chanda ◽  
Suparna Dey ◽  
Sanjibani Banerjee ◽  
Anirban Mukhopadhyay ◽  
...  
2007 ◽  
Vol 126 (2) ◽  
pp. 297-309 ◽  
Author(s):  
Denny P. Alappattu ◽  
D. Bala Subrahamanyam ◽  
P. K. Kunhikrishnan ◽  
Radhika Ramachandran ◽  
K. M. Somayaji ◽  
...  

2020 ◽  
Vol 189 ◽  
pp. 102444
Author(s):  
A.K. Jithin ◽  
P.A. Francis ◽  
A.S. Unnikrishnan ◽  
S.S.V.S. Ramakrishna

2012 ◽  
Vol 12 (3) ◽  
pp. 1287-1305 ◽  
Author(s):  
R. Cherian ◽  
C. Venkataraman ◽  
S. Ramachandran ◽  
J. Quaas ◽  
S. Kedia

Abstract. In this paper we analyse aerosol loading and its direct radiative effects over the Bay of Bengal (BoB) and Arabian Sea (AS) regions for the Integrated Campaign on Aerosols, gases and Radiation Budget (ICARB) undertaken during 2006, using satellite data from the MODerate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, the Aerosol Index from the Ozone Monitoring Instrument (OMI) on board the Aura satellite, and the European-Community Hamburg (ECHAM5.5) general circulation model extended by Hamburg Aerosol Module (HAM). By statistically comparing with large-scale satellite data sets, we firstly show that the aerosol properties measured during the ship-based ICARB campaign and simulated by the model are representative for the BoB and AS regions and the pre-monsoon season. In a second step, the modelled aerosol distributions were evaluated by a comparison with the measurements from the ship-based sunphotometer, and the satellite retrievals during ICARB. It is found that the model broadly reproduces the observed spatial and temporal variability in aerosol optical depth (AOD) over BoB and AS regions. However, AOD was systematically underestimated during high-pollution episodes, especially in the BoB leg. We show that this underprediction of AOD is mostly because of the deficiencies in the coarse mode, where the model shows that dust is the dominant component. The analysis of dust AOD along with the OMI Aerosol Index indicate that missing dust transport that results from too low dust emission fluxes over the Thar Desert region in the model caused this deficiency. Thirdly, we analysed the spatio-temporal variability of AOD comparing the ship-based observations to the large-scale satellite observations and simulations. It was found that most of the variability along the track was from geographical patterns, with a minor influence by single events. Aerosol fields were homogeneous enough to yield a good statistical agreement between satellite data at a 1° spatial, but only twice-daily temporal resolution, and the ship-based sunphotometer data at a much finer spatial, but daily-average temporal resolution. Examination of the satellite data further showed that the year 2006 is representative for the five-year period for which satellite data were available. Finally, we estimated the clear-sky solar direct aerosol radiative forcing (DARF). We found that the cruise represents well the regional-seasonal mean forcings. Constraining simulated forcings using the observed AOD distributions yields a robust estimate of regional-seasonal mean DARF of −8.6, −21.4 and +12.9 W m−2 at the top of the atmosphere (TOA), at the surface (SUR) and in the atmosphere (ATM), respectively, for the BoB region, and over the AS, of, −6.8, −12.8, and +6 W m−2 at TOA, SUR, and ATM, respectively.


2019 ◽  
Vol 69 (2) ◽  
pp. 149-155
Author(s):  
P. A. Maheswaran ◽  
S. Satheesh Kumar ◽  
T. Pradeep Kumar

Intra-annual variability of the Arabian Sea high salinity water mass (ASHSW) in the South Eastern Arabian Sea (SEAS) and Gulf of Mannar (GoM) are addressed in this paper by utilisng the monthly missions carried out onboard INS Sagardhwani during 2016-17. Our observations revealed that the ASHSW was evident along the SEAS irrespective of seasons, whereas in the GoM the presence of ASHSW was observed during winter. The processes such as downwelling/up-welling, coastal currents, intrusion of low saline waters, stratification are clearly affects the spreading of the ASHSW. The characteristics such as core salinity value, depth and thickness of ASHSW exhibited remarkable spatio-temporal variability. Lateral mixing with the low saline waters in the region during winter reduces its core salinity. The intrusion of low saline waters was clearly seen upto 15 ON but the intrusion of low saline waters is not flowing through the GoM. The interface between the ASHSW and the prevailing low saline waters showed strong horizontal gradients of salinity. The presence of the ASHSW makes difference in the SLD and the below layer gradient which is sufficient to complicate or influence sound transmission. The spatio temporal variability of the ASHSW and its acoustic relevance are documented in this paper.


2020 ◽  
Vol 48 (10) ◽  
pp. 1413-1419
Author(s):  
Kamal Kumar Barik ◽  
Sanjiba Kumar Baliarsingh ◽  
Amit Kumar Jena ◽  
Suchismita Srichandan ◽  
Alakes Samanta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document