scholarly journals Data Mining on 5G Technology IOT

2019 ◽  
Vol 8 (05) ◽  
pp. 24655-24660
Author(s):  
Kranthi K Lammatha

Data Mining on 5G Technology IOT Currently, data mining is regarded as one of the essential factors for the next generation of mobile networks. Through research and data analysis, there are expectations that complexity of these networks will be overcome and it will be possible to carry out dynamic management and operation activities. In order to full comprehend the particulars of 5G network, there are certain kind of information that should be gathered by network components in order to be analyzed by a data mining scheme. The recent years have seen a tremendous effort put in the course of designing the 5th Generation of mobile networks (5G). The innovation of 5G mobile networks have been aimed at providing tailor cut solution for different kinds of industries particularly the telecommunication sector, intelligent transportation industries, health sector and even in smart factories. On the other hand, the scientific community has realized that big data solutions can significantly enhance the operation and management of both current and future mobile networks. Usually, data mining is employed in the course of discovering patterns and relationships between different variables particularly in large data sets. Through the use of statistical analysis, machine learning and artificial intelligence are used in the data set in the course of extracting necessary knowledge from the examined data. Data mining is integral in 5G technology because it is through data mining that 5G is considered different particularly through the ease in decision making process that has been offered by the system in order to mitigate some common challenges through a dynamic and proactive mechanism.

Author(s):  
Md. Zakir Hossain ◽  
Md.Nasim Akhtar ◽  
R.B. Ahmad ◽  
Mostafijur Rahman

<span>Data mining is the process of finding structure of data from large data sets. With this process, the decision makers can make a particular decision for further development of the real-world problems. Several data clusteringtechniques are used in data mining for finding a specific pattern of data. The K-means method isone of the familiar clustering techniques for clustering large data sets.  The K-means clustering method partitions the data set based on the assumption that the number of clusters are fixed.The main problem of this method is that if the number of clusters is to be chosen small then there is a higher probability of adding dissimilar items into the same group. On the other hand, if the number of clusters is chosen to be high, then there is a higher chance of adding similar items in the different groups. In this paper, we address this issue by proposing a new K-Means clustering algorithm. The proposed method performs data clustering dynamically. The proposed method initially calculates a threshold value as a centroid of K-Means and based on this value the number of clusters are formed. At each iteration of K-Means, if the Euclidian distance between two points is less than or equal to the threshold value, then these two data points will be in the same group. Otherwise, the proposed method will create a new cluster with the dissimilar data point. The results show that the proposed method outperforms the original K-Means method.</span>


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


1997 ◽  
Vol 1997 ◽  
pp. 143-143
Author(s):  
B.L. Nielsen ◽  
R.F. Veerkamp ◽  
J.E. Pryce ◽  
G. Simm ◽  
J.D. Oldham

High producing dairy cows have been found to be more susceptible to disease (Jones et al., 1994; Göhn et al., 1995) raising concerns about the welfare of the modern dairy cow. Genotype and number of lactations may affect various health problems differently, and their relative importance may vary. The categorical nature and low incidence of health events necessitates large data-sets, but the use of data collected across herds may introduce unwanted variation. Analysis of a comprehensive data-set from a single herd was carried out to investigate the effects of genetic line and lactation number on the incidence of various health and reproductive problems.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3523-3526

This paper describes an efficient algorithm for classification in large data set. While many algorithms exist for classification, they are not suitable for larger contents and different data sets. For working with large data sets various ELM algorithms are available in literature. However the existing algorithms using fixed activation function and it may lead deficiency in working with large data. In this paper, we proposed novel ELM comply with sigmoid activation function. The experimental evaluations demonstrate the our ELM-S algorithm is performing better than ELM,SVM and other state of art algorithms on large data sets.


2021 ◽  
pp. 1826-1839
Author(s):  
Sandeep Adhikari, Dr. Sunita Chaudhary

The exponential growth in the use of computers over networks, as well as the proliferation of applications that operate on different platforms, has drawn attention to network security. This paradigm takes advantage of security flaws in all operating systems that are both technically difficult and costly to fix. As a result, intrusion is used as a key to worldwide a computer resource's credibility, availability, and confidentiality. The Intrusion Detection System (IDS) is critical in detecting network anomalies and attacks. In this paper, the data mining principle is combined with IDS to efficiently and quickly identify important, secret data of interest to the user. The proposed algorithm addresses four issues: data classification, high levels of human interaction, lack of labeled data, and the effectiveness of distributed denial of service attacks. We're also working on a decision tree classifier that has a variety of parameters. The previous algorithm classified IDS up to 90% of the time and was not appropriate for large data sets. Our proposed algorithm was designed to accurately classify large data sets. Aside from that, we quantify a few more decision tree classifier parameters.


Author(s):  
V. Suresh Babu ◽  
P. Viswanath ◽  
Narasimha M. Murty

Non-parametric methods like the nearest neighbor classifier (NNC) and the Parzen-Window based density estimation (Duda, Hart & Stork, 2000) are more general than parametric methods because they do not make any assumptions regarding the probability distribution form. Further, they show good performance in practice with large data sets. These methods, either explicitly or implicitly estimates the probability density at a given point in a feature space by counting the number of points that fall in a small region around the given point. Popular classifiers which use this approach are the NNC and its variants like the k-nearest neighbor classifier (k-NNC) (Duda, Hart & Stock, 2000). Whereas the DBSCAN is a popular density based clustering method (Han & Kamber, 2001) which uses this approach. These methods show good performance, especially with larger data sets. Asymptotic error rate of NNC is less than twice the Bayes error (Cover & Hart, 1967) and DBSCAN can find arbitrary shaped clusters along with noisy outlier detection (Ester, Kriegel & Xu, 1996). The most prominent difficulty in applying the non-parametric methods for large data sets is its computational burden. The space and classification time complexities of NNC and k-NNC are O(n) where n is the training set size. The time complexity of DBSCAN is O(n2). So, these methods are not scalable for large data sets. Some of the remedies to reduce this burden are as follows. (1) Reduce the training set size by some editing techniques in order to eliminate some of the training patterns which are redundant in some sense (Dasarathy, 1991). For example, the condensed NNC (Hart, 1968) is of this type. (2) Use only a few selected prototypes from the data set. For example, Leaders-subleaders method and l-DBSCAN method are of this type (Vijaya, Murthy & Subramanian, 2004 and Viswanath & Rajwala, 2006). These two remedies can reduce the computational burden, but this can also result in a poor performance of the method. Using enriched prototypes can improve the performance as done in (Asharaf & Murthy, 2003) where the prototypes are derived using adaptive rough fuzzy set theory and as in (Suresh Babu & Viswanath, 2007) where the prototypes are used along with their relative weights. Using a few selected prototypes can reduce the computational burden. Prototypes can be derived by employing a clustering method like the leaders method (Spath, 1980), the k-means method (Jain, Dubes, & Chen, 1987), etc., which can find a partition of the data set where each block (cluster) of the partition is represented by a prototype called leader, centroid, etc. But these prototypes can not be used to estimate the probability density, since the density information present in the data set is lost while deriving the prototypes. The chapter proposes to use a modified leader clustering method called the counted-leader method which along with deriving the leaders preserves the crucial density information in the form of a count which can be used in estimating the densities. The chapter presents a fast and efficient nearest prototype based classifier called the counted k-nearest leader classifier (ck-NLC) which is on-par with the conventional k-NNC, but is considerably faster than the k-NNC. The chapter also presents a density based clustering method called l-DBSCAN which is shown to be a faster and scalable version of DBSCAN (Viswanath & Rajwala, 2006). Formally, under some assumptions, it is shown that the number of leaders is upper-bounded by a constant which is independent of the data set size and the distribution from which the data set is drawn.


Author(s):  
Brian Hoeschen ◽  
Darcy Bullock ◽  
Mark Schlappi

Historically, stopped delay was used to characterize the operation of intersection movements because it was relatively easy to measure. During the past decade, the traffic engineering community has moved away from using stopped delay and now uses control delay. That measurement is more precise but quite difficult to extract from large data sets if strict definitions are used to derive the data. This paper evaluates two procedures for estimating control delay. The first is based on a historical approximation that control delay is 30% larger than stopped delay. The second is new and based on segment delay. The procedures are applied to a diverse data set collected in Phoenix, Arizona, and compared with control delay calculated by using the formal definition. The new approximation was observed to be better than the historical stopped delay procedure; it provided an accurate prediction of control delay. Because it is an approximation, this methodology would be most appropriately applied to large data sets collected from travel time studies for ranking and prioritizing intersections for further analysis.


Sign in / Sign up

Export Citation Format

Share Document