scholarly journals Modelling and CFD analysis of Shell & Tube Heat Exchanger

Author(s):  
Keshav Raj Khatkar ◽  
2012 ◽  
Vol 26 (9) ◽  
pp. 2949-2958 ◽  
Author(s):  
Seong Won Hwang ◽  
Dong Hwan Kim ◽  
June Kee Min ◽  
Ji Hwan Jeong

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Devanand D. Chillal ◽  
◽  
Uday C. Kapale ◽  
N.R. Banapurmath ◽  
T. M. Yunus Khan ◽  
...  

The work presented is an effort to realize the changes occurring for convective coefficients of heat transfer in STHX fitted with inclined baffles. Effort has been undertaken using Fluent, a commercially available CFD code ona CAD model of small STHX with inclined baffles with cold liquid flowing into the tubes and hot liquid flowing in the shell. Four sets of CFD analysis have been carried out. The hot liquid flow rate through shell compartments varied from 0.2 kg/sec to 0.8 kg/sec in steps of 0.2 kg/sec, while keeping the cold liquid flow condition in tube at 0.4 kg/sec constant. Heat transfer rates, compartment temperatures, and overall heat transfer coefficients, for cold liquid and hot liquid, were studied. The results given by the software using CFD approach were appreciable and comparatively in agreement with the results available by the experimental work, which was undertaken for the same set of inlet pressure conditions, liquid flow rates, and inlet temperatures of liquid for both hot and cold liquids. The experimental output results were also used to validate the results given by the CFD software. The results from the CFD analysis were further used to conclude the effect of baffle inclination on heat duty. The process thus followed also helped realize the effects of baffle inclination on convective heat transfer coefficient of the liquid flow through the shell in an inclined baffle shell and tube heat exchanger. The temperature plots for both cold and hot liquid were also generated for understanding the compartmental temperature distributions inclusive of the inlet and outlet compartments. The heat duty for a heat exchanger has been found to increase with the increase in baffle inclinations from zero degree to 20 degrees. Likewise, the convective heat transfer coefficients have also been found to increase with the increase in baffle inclinations.


2019 ◽  
Vol 3 (3) ◽  
pp. 169-186 ◽  
Author(s):  
M. H. Masud ◽  
T. Islam ◽  
M. U. H. Joardder ◽  
A. A. Ananno ◽  
P. Dabnichki

2019 ◽  
Vol 5 (3) ◽  
pp. 10
Author(s):  
Mahtab Alam ◽  
Dr. Dharmendra Singh Rajput

The main objective of the present work is to investigation of optimum design of plate fin tube heat exchanger using Computational fluid dynamic approach and maximizing thermal performance. There are total five designs of plate fin and tube heat exchanger are used in present work and CFD analysis have been performed in it to get maximum heat transfer. It has been observed from CFD analysis that the maximum heat transfer can be achieved from plate fin and tube heat exchanger with elliptical tube arrangement inclined at 30o with 23.22% more heat transfer capacity as compared to circular tube plate pin heat exchanger. So that it is recommended that if the plate fins and tube heat exchanger with inclined elliptical tube used in place of circular tube arrangement, batter heat transfer can be achieved.


Author(s):  
V. Harika and Dr. K. Vasantha Kumar

AC plant Chiller is considered as a shell-and-tube heat exchanger and generally applied in a water-cooled chiller. These days shell and tube heat exchanger (STHX) is the most common type of heat exchanger broadly used in marine ships, due to its high pressure application. The AC plants fitted on-board Marine ships consist of a Chiller i.e. parallel flow heat exchanger with baffles. It is important to improve the performance of a chiller so that the usage of electrical energy can be reduced while the quality of a product can be increased. The water is cooled by using refrigerant in this chiller. This project mainly deals with modeling the prototype of basic geometry of shell and tube heat exchanger using Solidworks and meshing using simulation run using CFD package ANSYS. In this paper, by varying the number of baffles and different fluids they are water, R134a and R410a their performance of the chiller is studied. In this work, effect of the baffle spacing on the performance of a heat exchanger has been examined. Thermal and fatigue analysis is done in ANSYS for two materials Aluminum and Copper for better fluid at from CFD analysis.


Sign in / Sign up

Export Citation Format

Share Document