scholarly journals THE INTEGRATION MODEL ON IMPLEMENTATION OF THE BIODIESEL MANDATORY POLICY

2021 ◽  
Vol 115 (7) ◽  
pp. 66-81
Author(s):  
L. Zafriana ◽  
Marjono ◽  
I.D. Qurbani ◽  
Sugiono
2017 ◽  
Vol 31 (2) ◽  
pp. 78-89 ◽  
Author(s):  
Asmir Gračanin ◽  
Igor Kardum ◽  
Jasna Hudek-Knežević

Abstract. The neurovisceral integration model proposes that different forms of self-regulation, including the emotional suppression, are characterized by the activation of neural network whose workings are also reflected in respiratory sinus arrhythmia (RSA). However, most of the previous studies failed to observe theoretically expected increases in RSA during emotional suppression. Even when such effects were observed, it was not clear whether they resulted from specific task demands, a decrease in muscle activity, or they were the consequence of more specific self-control processes. We investigated the relation between habitual or trait-like suppression, spontaneous, and instructed suppression with changes in RSA during negative emotion experience. A modest positive correlation between spontaneous situational and habitual suppression was observed across two experimental tasks. Furthermore, the results showed greater RSA increase among participants who experienced higher negative affect (NA) increase and reported higher spontaneous suppression than among those with higher NA increase and lower spontaneous suppression. Importantly, this effect was independent from the habitual suppression and observable facial expressions. The results of the additional task based on experimental manipulation, rather than spontaneous use of situational suppression, indicated a similar relation between suppression and RSA. Our results consistently demonstrate that emotional suppression, especially its self-regulation component, is followed by the increase in parasympathetic activity.


2018 ◽  
Vol 33 ◽  
Author(s):  
Guilherme Casarões

The institutional framework of Latin American integration saw a period of intense transformation in the 2000s, with the death of the ambitious project of the Free Trade Area of the Americas (FTAA), spearheaded by the United States, and the birth of two new institutions, the Union of South American Nations (UNASUR) and the Community of Latin American and Caribbean States (CELAC). This article offers a historical reconstruction of regional integration structures in the 2000s, with emphasis on the fault lines between Brazil, Venezuela and the US, and how they have shaped the institutional order across the hemisphere. We argue that the shaping of UNASUR and CELAC, launched respectively in 2007 and 2010, is the outcome of three complex processes: (1) Brazil’s struggle to strengthen Mercosur by acting more decisively as a regional paymaster; (2) Washington’s selective engagement with some key regional players, notably Colombia, and (3) Venezuela’s construction of an alternative integration model through the Bolivarian Alliance (ALBA) and oil diplomacy. If UNASUR corresponded to Brazil’s strategy to neutralize the growing role of Caracas in South America and to break apart the emerging alliance between Venezuela, Argentina, and Bolivia, CELAC was at the same time a means to keep the US away from regional decisions, and to weaken the Caracas-Havana axis that sustained ALBA.


2010 ◽  
Vol 12 (4) ◽  
pp. 568-573
Author(s):  
Siyuan ZHU ◽  
Yingchun HUANG

2020 ◽  
Vol 15 ◽  
Author(s):  
Omer Irshad ◽  
Muhammad Usman Ghani Khan

Aim: To facilitate researchers and practitioners for unveiling the mysterious functional aspects of human cellular system through performing exploratory searching on semantically integrated heterogeneous and geographically dispersed omics annotations. Background: Improving health standards of life is one of the motives which continuously instigates researchers and practitioners to strive for uncovering the mysterious aspects of human cellular system. Inferring new knowledge from known facts always requires reasonably large amount of data in well-structured, integrated and unified form. Due to the advent of especially high throughput and sensor technologies, biological data is growing heterogeneously and geographically at astronomical rate. Several data integration systems have been deployed to cope with the issues of data heterogeneity and global dispersion. Systems based on semantic data integration models are more flexible and expandable than syntax-based ones but still lack aspect-based data integration, persistence and querying. Furthermore, these systems do not fully support to warehouse biological entities in the form of semantic associations as naturally possessed by the human cell. Objective: To develop aspect-oriented formal data integration model for semantically integrating heterogeneous and geographically dispersed omics annotations for providing exploratory querying on integrated data. Method: We propose an aspect-oriented formal data integration model which uses web semantics standards to formally specify its each construct. Proposed model supports aspect-oriented representation of biological entities while addressing the issues of data heterogeneity and global dispersion. It associates and warehouses biological entities in the way they relate with Result: To show the significance of proposed model, we developed a data warehouse and information retrieval system based on proposed model compliant multi-layered and multi-modular software architecture. Results show that our model supports well for gathering, associating, integrating, persisting and querying each entity with respect to its all possible aspects within or across the various associated omics layers. Conclusion: Formal specifications better facilitate for addressing data integration issues by providing formal means for understanding omics data based on meaning instead of syntax


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1055
Author(s):  
Qingyun Zhang ◽  
Jian Yang ◽  
Panpan Huang ◽  
Xin Liu ◽  
Shanpeng Wang ◽  
...  

In this paper, to address the problem of positioning accumulative errors of the inertial navigation system (INS), a bionic autonomous positioning mechanism integrating INS with a bioinspired polarization compass is proposed. In addition, the bioinspired positioning system hardware and the integration model are also presented. Concerned with the technical issue of the accuracy and environmental adaptability of the integrated positioning system, the sun elevation calculating method based on the degree of polarization (DoP) and direction of polarization (E-vector) is presented. Moreover, to compensate for the latitude and longitude errors of INS, the bioinspired positioning system model combining the polarization compass and INS is established. Finally, the positioning performance of the proposed bioinspired positioning system model was validated via outdoor experiments. The results indicate that the proposed system can compensate for the position errors of INS with satisfactory performance.


Rheumatology ◽  
2021 ◽  
Author(s):  
Marco Castori

Abstract Joint hypermobility is a common characteristic in humans. Its non-casual association with various musculoskeletal complaints is known and currently defined “the spectrum”. It includes hypermobile Ehlers–Danlos syndrome (hEDS) and hypermobility spectrum disorders (HSD). hEDS is recognized by a set of descriptive criteria, while HSD is the background diagnosis for individuals not fulfilling these criteria. Little is known about the aetiopathogenesis of the spectrum. It may be interpreted as a complex trait according to the integration model. Particularly, the spectrum is common in the general population, affects morphology, presents extreme clinical variability and is characterized by marked sex bias without a clear Mendelian or hormonal explanation. Joint hypermobility and the other hEDS systemic criteria are intended as qualitative derivatives of continuous traits of normal morphological variability. The need for a minimum set of criteria for hEDS diagnosis implies a tendency to co-vary of these underlying continuous traits. In evolutionary biology, such a co-variation (i.e. integration) is driven by multiple forces, including genetic, developmental, functional and environmental/acquired interactors. The aetiopathogenesis of the spectrum may be resolved by a deeper understanding of phenotypic variability, which superimposes on normal morphological variability.


Sign in / Sign up

Export Citation Format

Share Document