scholarly journals The Quantity of CO2 Bound by Concrete Carbonation in Norway

◽  
2016 ◽  
Author(s):  
Christian Engelsen ◽  
◽  
Harald Justnes ◽  
Anne Rønning ◽  
◽  
...  
Keyword(s):  
2018 ◽  
Vol 4 (1) ◽  
pp. 165
Author(s):  
Herry Prabowo ◽  
Mochamad Hilmy

The assessment of the service life of concrete structures using the durability design approach is widely accepted nowadays. It is really encouraged that a simulation model can resemble the real performance of concrete during the service life. This paper investigates the concrete carbonation through probabilistic analysis. Data regarding Indonesian construction practice were taken from Indonesian National Standard (SNI). Meanwhile, data related to Indonesian weather condition for instance humidity and temperature are taken from local Meteorological, Climatological, and Geophysical Agency from 2004 until 2016. Hopefully the results can be a starting point for durability of concrete research in Indonesia.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2167 ◽  
Author(s):  
Ying Chen ◽  
Peng Liu ◽  
Zhiwu Yu

The influence of temperature, CO2 concentration and relative humidity on the carbonation depth and compressive strength of concrete was investigated. Meanwhile, phase composition, types of hydration products and microstructure characteristics of samples before and after the carbonation were analyzed by XRD and ESEM. Research results demonstrate that temperature, CO2 concentration and relative humidity influence the carbonation depth and compressive strength of concrete significantly. There is a linear relationship between temperature and carbonation depth, as well as the compressive strength of concrete. CO2 concentration and relative humidity present a power function and a polynomial function with carbonation depth of concrete, respectively. The concrete carbonation depth increases with the increase of relative humidity and reaches the maximum value when the relative humidity is 70%. Significant differences of phase composition, hydration products and microstructure are observed before and after the carbonation. Carbonization products of samples are different with changes of temperatures (10 °C, 20 °C and 30 °C). The result of crystal structure analysis indicates that the carbonation products are mainly polyhedral spherical vaterite and aragonite.


2013 ◽  
Vol 357-360 ◽  
pp. 939-943 ◽  
Author(s):  
Jian Gang Niu ◽  
Liang Yan ◽  
Hai Tao Zhai

Based on the coupling testing program of freeze-thaw and carbonation, the laboratory simulation test is carried out. The laws of carbonation depth of the fly ash concrete suffered the freeze-thaw cycle in different test modes and the influence of fly ash dosage on concrete carbonation depth after the freeze-thaw cycle are studied. Defining the influence coefficient of the freeze-thaw cycles on carbonation depth of concrete, the mechanism of coupling of freeze-thaw and carbonation is analyzed,and the role of freeze-thaw and carbonation in the coupling process are obtained.


Sign in / Sign up

Export Citation Format

Share Document