Influence of Stark Shift and Kerr-like Medium on the Interaction of a Two-Level Atom with Two Quantized Field Modes: A Time-Dependent System

2017 ◽  
Vol 5 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Sameh Korashy ◽  
A. S. Abdel-Rady ◽  
Abdel-Nasser A. Osman
2011 ◽  
Vol 25 (19) ◽  
pp. 2621-2636 ◽  
Author(s):  
E. M. KHALIL ◽  
M. M. A. AHMED ◽  
A.-S. F. OBADA

The problem of a two-level atom interacting with single mode cavity field is considered, however, the optical cavity is filled with new structure of a generalized nonlinear Stark shift via Ξ configuration. One starts with a three-level trapped atom interacting with the quantized field of center of mass motion thus a Hamiltonian for one-phonon process with nonlinearities is derived. Through the elimination of the intermediate level by using the adiabatic elimination method, we generate a new structure of effective Hamiltonian for a two-level atom with a nonlinear Stark shift. The temporal evolution of the atomic inversion is studied, we introduce that in the presence of the Stark shift parameter the atom leaves in a maximal entangled sate. We use the von Neuman entropy to measure the degree of entanglement between the atom and the field. After adding the nonlinear Stark shift the system never reaches the pure state. Also we study the Q-function for obtaining more information in phase space for this system. These aspects are sensitive to changes in the Stark shift parameter. The results shows that the effect of the nonlinearity in the Stark shift changes the quasiperiod of the field entropy and hence the entanglement between the particle and the field.


2000 ◽  
Vol 49 (11) ◽  
pp. 2146
Author(s):  
XING AI-TANG ◽  
HUANG XIANG-YOU ◽  
DONG TAI-QIAN

Author(s):  
Amir Karimi

In this paper, first, we introduce special types of entangled quantum states named “entangled displaced even and odd squeezed states” by using displaced even and odd squeezed states which are constructed via the action of displacement operator on the even and odd squeezed states, respectively. Next, we present a theoretical scheme to generate the introduced entangled states. This scheme is based on the interaction between a [Formula: see text]-type three-level atom and a two-mode quantized field in the presence of two strong classical fields. In the continuation, we consider the entanglement feature of the introduced entangled states by evaluating concurrence. Moreover, we study the influence of the displacement parameter on the entanglement degree of the introduced entangled states and compare the results. It will be observed that the concurrence of the “entangled displaced odd squeezed states” has less decrement with respect to the “entangled displaced even squeezed states” by increasing the displacement parameter.


2018 ◽  
Vol 72 (10) ◽  
Author(s):  
Jorge A. Anaya-Contreras ◽  
Arturo Zúñiga-Segundo ◽  
Aldo Espinosa-Zúñiga ◽  
Francisco Soto-Eguibar ◽  
Héctor M. Moya-Cessa

Author(s):  
K. BAKKE ◽  
I. A. PEDROSA ◽  
C. FURTADO

In this contribution, we discuss quantum effects on relic gravitons described by the Friedmann-Robertson-Walker (FRW) spacetime background by reducing the problem to that of a generalized time-dependent harmonic oscillator, and find the corresponding Schrödinger states with the help of the dynamical invariant method. Then, by considering a quadratic time-dependent invariant operator, we show that we can obtain the geometric phases and squeezed quantum states for this system. Furthermore, we also show that we can construct Gaussian wave packet states by considering a linear time-dependent invariant operator. In both cases, we also discuss the uncertainty product for each mode of the quantized field.


2019 ◽  
Vol 26 (4) ◽  
pp. 429-443 ◽  
Author(s):  
Joseph E. Borovsky ◽  
Adnane Osmane

Abstract. Using the solar-wind-driven magnetosphere–ionosphere–thermosphere system, a methodology is developed to reduce a state-vector description of a time-dependent driven system to a composite scalar picture of the activity in the system. The technique uses canonical correlation analysis to reduce the time-dependent system and driver state vectors to time-dependent system and driver scalars, with the scalars describing the response in the system that is most-closely related to the driver. This reduced description has advantages: low noise, high prediction efficiency, linearity in the described system response to the driver, and compactness. The methodology identifies independent modes of reaction of a system to its driver. The analysis of the magnetospheric system is demonstrated. Using autocorrelation analysis, Jensen–Shannon complexity analysis, and permutation-entropy analysis the properties of the derived aggregate scalars are assessed and a new mode of reaction of the magnetosphere to the solar wind is found. This state-vector-reduction technique may be useful for other multivariable systems driven by multiple inputs.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1269-1279
Author(s):  
GAMAL M. ABD AL-KADER

The properties of the displaced Fock states (DFS's) superpositions are reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. The atomic inversion and photon number distribution are discussed. The quantum entropy and the entanglement of the atom-field are investigated. The exact results are employed to perform a careful investigation of the temporal evolution of the entropy. The connection between the field entropy and the collapses and revivals of the atomic inversion has been established. The general conclusions reached are illustrated by numerical results.


Sign in / Sign up

Export Citation Format

Share Document