The evaluation of corrosion resistance of protective and functional coatings using corrosion-ratemeter

2016 ◽  
pp. 12-12 ◽  
Author(s):  
V.V. Semenychev ◽  
◽  
T.B. Smirnova ◽  
Author(s):  
A. N. Skvortsova ◽  
T. I. Bobkova ◽  
B. V. Farmakovsky ◽  
V. N. Klimov ◽  
A. I. Dmitryuk

The paper studies the preparation of a composite nanostructured powder manufactured from an alloy of Co–Cr–Si–Zr–TiB2–BN system and describes functional coatings with high microhardness and corrosion resistance based on that powder. 


2012 ◽  
Vol 533 ◽  
pp. 91-97 ◽  
Author(s):  
Andrei Manzat ◽  
A. Killinger ◽  
R. Gadow

Rising demands for ecologically friendly automotive engines require a significant decrease in fuel consumption and emissions. Also the recent trend of downsizing engines demands for high performance materials for internal combustion engine applications. Tribologically functional coatings applied by supersonic flame spraying help in boosting the engine efficiency by reducing the internal friction and improving the durability and wear resistance of the cylinder running surface much-needed for engine downsizing tasks together with a high corrosion resistance enabling the use of bio fuels. In addition, the tailored surface topography of the thermal spray coatings help in supporting advantageous friction states and thereby show the benefit of reducing the oil consumption resulting in reduced emissions. The thermally sprayed coatings were applied using HVOF and HVSFS processes together with a specially designed spray gun trajectory in order to achieve a fast and cost efficient coating procedure. Several different coating materials, including novel nanostructured powders, have been investigated and compared to state-of-the-art cylinder liners. The performance of the coated cylinder liners regarding wear and corrosion resistance, friction coefficient and effects of the surface topography have been investigated in various test setups including engine tests.


Author(s):  
Hanna Karakurkchi ◽  
Mykola Sakhnenko ◽  
Irina Yermolenko ◽  
Serhii Indykov ◽  
Natalia Horokhivska ◽  
...  

Technological approaches to the application of functional electrochemical coatings in civil and military technologies are analyzed. It is shown that the existing technical solutions are aimed at solving the problems of strengthening and protection of surfaces and detoxification of environments from pollutants of natural and man-made origin. Electrochemical coatings based on the iron triad, doped with refractory metals, increase corrosion resistance, microhardness and wear resistance of surfaces. Doped with transition metals heteroxide coatings, which are synthesized by the method of plasma electrolytic oxidation on aluminum and titanium alloys have catalytic properties to neutralize toxic substances in the gas and liquid phases. Peculiarities of electrochemical formation of functional coatings on construction materials of different types are investigated. It is shown that cathodic deposition by direct and pulsed current on low-carbon steel and gray cast iron forms uniform ternary coatings of Fe-Mo-W and composite systems of Fe-Co-Mo (Fe-Co-W), which have increased corrosion resistance and mechanical properties compared to base metal material. The obtained thin-layer coatings are recommended for the restoration and strengthening of worn surfaces, in particular in the technology of repair of weapons and military equipment. It was found that plasma-electrolyte treatment of piston silumin in alkaline solutions based on diphosphates synthesized heteroxide systems that are active in reducing the number of toxic emissions of internal star engines and reducing hourly fuel consumption. It is shown that nanocomposite coatings on titanium show photocatalytic activity on the destruction of model pollutants. The obtained materials have a set of enhanced functional properties and are promising for use in industrial and repair production, including the security and defense sector.


Author(s):  
B. V. Farmakovsky ◽  
N. A. Sokolova ◽  
T. I. Bobkova

The paper describes an alloy with a content of 20–26% Co, 17.4–21.1% Cr, 2.6–4.9% Si, 3–5% Re, 4–6% Zr, 0.2–0,6% Ce, 0.1–0.5% La, 0.3–0.7%Y, 2–4% Al. The cobalt-based alloy is applied as protective coating on components of precision engineering with adhesion 42–45 MPa, microhardness 3.6 GPa, corrosion resistance class 1, within the range of operating temperatures from –60 to 550°С.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3257 ◽  
Author(s):  
Justyna Bącela ◽  
Magdalena Beata Łabowska ◽  
Jerzy Detyna ◽  
Anna Zięty ◽  
Izabela Michalak

In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.


2018 ◽  
Vol 42 (12) ◽  
pp. 10337-10347 ◽  
Author(s):  
V. S. Smitha ◽  
S. S. Syamili ◽  
A. Peer Mohamed ◽  
Balagopal N. Nair ◽  
U. S. Hareesh

Sol–gel derived ORMOSIL–ZrO2 hybrid nanocomposites as protective environment-resistant functional coatings on glass substrates and aluminium alloys.


Author(s):  
Anna C. Fraker

Small amounts of nickel are added to titanium to improve the crevice corrosion resistance but this results in an alloy which has sheet fabrication difficulties and is subject to the formation of large Ti2Ni precipitates. These large precipitates can serve as local corrosion sites; but in a smaller more widely dispersed form, they can have a beneficial effect on crevice corrosion resistance. The purpose of the present work is to show that the addition of a small amount of Mo to the Ti-1.5Ni alloy reduces the Ti2Ni precipitate size and produces a more elongated grained microstructure. It has recently been reported that small additions of Mo to Ti-0.8 to lw/o Ni alloys produce good crevice corrosion resistance and improved fabrication properties.


Sign in / Sign up

Export Citation Format

Share Document