scholarly journals The RNA-binding protein ESRP1 promotes human colorectal cancer progression

Oncotarget ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 10007-10024 ◽  
Author(s):  
Sharmila Fagoonee ◽  
Gabriele Picco ◽  
Francesca Orso ◽  
Arrigo Arrigoni ◽  
Dario L. Longo ◽  
...  
2019 ◽  
Vol 17 (12) ◽  
pp. 2469-2479 ◽  
Author(s):  
Rui Wang ◽  
Hongwei Liu ◽  
Yingying Shao ◽  
Kailong Wang ◽  
Shuangshuang Yin ◽  
...  

Gut ◽  
2020 ◽  
pp. gutjnl-2020-320652
Author(s):  
Lei Sun ◽  
Arabella Wan ◽  
Zhuolong Zhou ◽  
Dongshi Chen ◽  
Heng Liang ◽  
...  

ObjectiveDysregulated cellular metabolism is a distinct hallmark of human colorectal cancer (CRC). However, metabolic programme rewiring during tumour progression has yet to be fully understood.DesignWe analysed altered gene signatures during colorectal tumour progression, and used a complex of molecular and metabolic assays to study the regulation of metabolism in CRC cell lines, human patient-derived xenograft mouse models and tumour organoid models.ResultsWe identified a novel RNA-binding protein, RALY (also known as hnRNPCL2), that is highly associated with colorectal tumour aggressiveness. RALY acts as a key regulatory component in the Drosha complex, and promotes the post-transcriptional processing of a specific subset of miRNAs (miR-483, miR-676 and miR-877). These miRNAs systematically downregulate the expression of the metabolism-associated genes (ATP5I, ATP5G1, ATP5G3 and CYC1) and thereby reprogramme mitochondrial metabolism in the cancer cell. Analysis of The Cancer Genome Atlas (TCGA) reveals that increased levels of RALY are associated with poor prognosis in the patients with CRC expressing low levels of mitochondrion-associated genes. Mechanistically, induced processing of these miRNAs is facilitated by their N6-methyladenosine switch under reactive oxygen species (ROS) stress. Inhibition of the m6A methylation abolishes the RALY recognition of the terminal loop of the pri-miRNAs. Knockdown of RALY inhibits colorectal tumour growth and progression in vivo and in organoid models.ConclusionsCollectively, our results reveal a critical metabolism-centric role of RALY in tumour progression, which may lead to cancer therapeutics targeting RALY for treating CRC.


1999 ◽  
pp. 61
Author(s):  
Michael E. Chen ◽  
Gail C. Fraizer ◽  
Tasneem Ahmed ◽  
Bei Zheng ◽  
Jeffrey Wilusz ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14282 ◽  
Author(s):  
Inti Zlobec ◽  
Eva Karamitopoulou ◽  
Luigi Terracciano ◽  
Salvatore Piscuoglio ◽  
Giandomenica Iezzi ◽  
...  

2020 ◽  
Vol 134 (14) ◽  
pp. 1973-1990
Author(s):  
Huaiming Wang ◽  
Rongkang Huang ◽  
Wentai Guo ◽  
Xiusen Qin ◽  
Zifeng Yang ◽  
...  

Abstract Colorectal cancer (CRC) is often diagnosed at later stages after it has metastasized to other organs. The development of chemoresistance also contributes to a poor prognosis. Therefore, an increased understanding of the metastatic properties of CRC and chemoresistance could improve patient survival. CUGBP elav-like family member 1 (CELF1) is an RNA-binding protein, which is overexpressed in many human malignant tumors. However, the influence of CELF1 in CRC is unclear. V-ets erythroblastosis virus E26 oncogene homologue 2 (ETS2) is an evolutionarily conserved proto-oncogene known to be overexpressed in a variety of human cancers including CRC. In thespresent tudy, we investigated the association between CELF1 and ETS2 in CRC tumorigenesis and oxaliplatin (L-OHP) resistance. We found a positive correlation between the elevated expression of CELF1 and ETS2 in human CRC tissues. Overexpression of CELF1 increased CRC cell proliferation, migration, and invasion in vitro and in a xenograft tumor growth model in vivo, and induced resistance to L-OHP. In contrast, CELF1 knockdown improved the response of CRC cells to L-OHP. Overexpression of ETS2 increased the malignant behavior of CRC cells (growth, migration, and invasion) and L-OHP resistance in vitro. Moreover, L-OHP resistance induced by CELF1 overexpression was reversed by ETS2 knockdown. The results of luciferase reporter and ribonucleoprotein immunoprecipitation assays indicated that CELF1 up-regulates ETS2 by binding to its 3′-UTR. Taken together, our findings have identified that CELF1 regulates ETS2 in a mechanism that results in CRC tumorigenesis and L-OHP resistance, and CELF1 may be a promising target for overcoming chemoresistance in CRC.


Sign in / Sign up

Export Citation Format

Share Document