Influence of the Manufacturing Accuracy of the Planetary Cycloid Gear on the Positioning Accuracy of the Parallel Robot

Author(s):  
S.V. Palochkin ◽  
Y.V. Sinitsyna ◽  
K.G. Erastova

The increased accuracy in high-speed positioning of the parallel robot effector in comparison with that of serial robots with a sequential structure is often the main reason for their use in various modern industries, such as the manufacture of printed circuit boards for microelectronics. However, despite the higher theoretical positioning accuracy, due to the kinematic structure of the parallel robot, in practice this characteristic largely depends on the accuracy of manufacturing individual elements of this mechanism, the most important of which are the gearboxes of the drives of its input pairs. A solution to the urgent problem of determining the effect of the manufacturing accuracy of planetary pinion gearboxes included in the drive of a five-link parallel robot on the positioning accuracy of its output link is proposed. A specific relationship has been determined between the grade of accuracy number of the gear part dimensions and the robot positioning accuracy. The unevenness of the positioning accuracy along the coordinate axes of its working area is revealed. It was found that near the area of certain robot positions the accuracy of its positioning drops sharply.

2018 ◽  
Vol 2018 (1) ◽  
pp. 000305-000309 ◽  
Author(s):  
Shiro Tatsumi ◽  
Shohei Fujishima ◽  
Hiroyuki Sakauchi

Abstract Build-up process is a highly effective method for miniaturization and high density integration of printed circuit boards. Along with increasing demands for high transmission speed of electronic devices with high functionality, packaging substrates installed with semiconductors in such devices are strongly required to reduce the transmission loss. Our insulation materials are used in a semi-additive process (SAP) with low dielectric loss tangent, smooth resin surface after desmear, and good insulation reliability. Actually, the transmission loss of strip line substrates and Cu surface roughness impact on transmission loss were measured using our materials. Furthermore, low dielectric molding film with low coefficient of thermal expansion (CTE) and low Young's modulus are introduced.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 299 ◽  
Author(s):  
Myunghoi Kim

An analytical model for metamaterial differential transmission lines (MTM-DTLs) with a corrugated ground-plane electromagnetic bandgap (CGP-EBG) structure in high-speed printed circuit boards is proposed. The proposed model aims to efficiently and accurately predict the suppression of common-mode noise and differential signal transmission characteristics. Analytical expressions for the four-port impedance matrix of the CGP-EBG MTM-DTL are derived using coupled-line theory and a segmentation method. Converting the impedance matrix into mixed-mode scattering parameters enables obtaining common-mode noise suppression and differential signal transmission characteristics. The comprehensive evaluations of the CGP-EBG MTM-DTL using the proposed analytical model are also reported, which is validated by comparing mixed-mode scattering parameters Scc21 and Sdd21 with those obtained from full-wave simulations and measurements. The proposed analytical model provides a drastic reduction of computation time and accurate results compared to full-wave simulation.


2013 ◽  
Vol 655-657 ◽  
pp. 88-93 ◽  
Author(s):  
Luciano Arruda ◽  
Cristiano Coimbra ◽  
João Marco Andolfatto

This work is related to reliability of strain measurement in flexible printed circuit boards (fPCBs) made with polyimide substrate. It was observed that the fPCBs are very sensitive to strain mounting stiffness. The indirect measurement method will be done employing High Speed Camera (HSP). The direct method will be formulated in two ways: 1) conventional strain gauge glued in an fPCBs; 2) printed strain gauge in a polyimide substrate. This paper will point out mistakes and show advantages when using different method to extract the deformation field of the selected area in a flexible thin film.


Sign in / Sign up

Export Citation Format

Share Document