Application of fingers vibrotactile stimulation in the brain — computer interface for the rehabilitation of post-stroke patients

Author(s):  
I.S. Gremitsky ◽  
◽  
D.Yu. Kuleshov ◽  
V.A. Popova ◽  
◽  
...  
2017 ◽  
Vol 27 (1) ◽  
pp. 107-137 ◽  
Author(s):  
A. A. Frolov ◽  
Dušan Húsek ◽  
E. V. Biryukova ◽  
P. D. Bobrov ◽  
O. A. Mokienko ◽  
...  

2016 ◽  
Vol 1 (3) ◽  
pp. 56-61
Author(s):  
A A Frolov ◽  
O A Mokienko ◽  
E V Biryukova ◽  
P D Bobrov ◽  
R Kh Lukmanov ◽  
...  

Aim - to evaluate the efficiency of the motor recovery rehabilitation procedure with the use of hand exoskeleton controlled by the brain-computer interface (BCI). Materials and methods. 60 post-stroke patients participated in the study. 46 patients had ischemic stroke and 14 had hemorrhagic stroke. 42 patients of the main experimental group were trained in kinesthetic motor imagery using hand exoskeleton controlled by BCI, 18 patients of the control group carried out the imitating procedure. Exoskeleton - BCI system consists of encephalograph NVX52 («Medical Computer Systems», Russia), personal computer and hand exoskeleton («Android Technique», Russia). Motor functions were estimated by neurological scales ARAT and Fugl-Meyer. Results were statistically analyzed by Mann-Whitney, Wilcoxon and x2 tests, Spearman's correlation and RM-ANOVA using Statsoft Statistica v. 6.0. Results. It is shown that post-stroke patients are able to control BCI with the same efficiency as healthy subjects, regardless of the duration, severity and localization of the disease. Ten days of BCI training significantly improved patients’ motor functions according to neurological scales ARAT and Fugl-Meyer. Improvement was mainly provided by the small movements of the hand. According to several sections of neurological scales, improvement in the main group is significantly higher than in the control group. However, according to general scores, statistically significant difference between two groups was not observed. Conclusion. It is shown that the rehabilitation procedure using hand exsoskeleton controlled by BCI significantly improves motor functions of the paretic arm regardless of the duration, severity and localization of the disease. Increase of the training duration enhances the rehabilitation efficiency.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mengjiao Hu ◽  
Hsiao-Ju Cheng ◽  
Fang Ji ◽  
Joanna Su Xian Chong ◽  
Zhongkang Lu ◽  
...  

Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been proven effective in post-stroke motor function enhancement, yet whether the combination of MI-BCI and tDCS may further benefit the rehabilitation of motor functions remains unknown. This study investigated brain functional activity and connectivity changes after a 2 week MI-BCI and tDCS combined intervention in 19 chronic subcortical stroke patients. Patients were randomized into MI-BCI with tDCS group and MI-BCI only group who underwent 10 sessions of 20 min real or sham tDCS followed by 1 h MI-BCI training with robotic feedback. We derived amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) from resting-state functional magnetic resonance imaging (fMRI) data pre- and post-intervention. At baseline, stroke patients had lower ALFF in the ipsilesional somatomotor network (SMN), lower ReHo in the contralesional insula, and higher ALFF/Reho in the bilateral posterior default mode network (DMN) compared to age-matched healthy controls. After the intervention, the MI-BCI only group showed increased ALFF in contralesional SMN and decreased ALFF/Reho in the posterior DMN. In contrast, no post-intervention changes were detected in the MI-BCI + tDCS group. Furthermore, higher increases in ALFF/ReHo/FC measures were related to better motor function recovery (measured by the Fugl-Meyer Assessment scores) in the MI-BCI group while the opposite association was detected in the MI-BCI + tDCS group. Taken together, our findings suggest that brain functional re-normalization and network-specific compensation were found in the MI-BCI only group but not in the MI-BCI + tDCS group although both groups gained significant motor function improvement post-intervention with no group difference. MI-BCI and tDCS may exert differential or even opposing impact on brain functional reorganization during post-stroke motor rehabilitation; therefore, the integration of the two strategies requires further refinement to improve efficacy and effectiveness.


2014 ◽  
Vol 114 (12. Vyp. 2) ◽  
pp. 66 ◽  
Author(s):  
S. V. Kotov ◽  
L. G. Turbina ◽  
P. D. Bobrov ◽  
A. A. Frolov ◽  
O. G. Pavlova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document