scholarly journals MODERN TECHNOLOGIES OF NUCLEAR MEDICINE IN DIAGNOSIS OF BRAIN TUMORS (LITERATURE REVIEW)

2018 ◽  
Vol 5 (5) ◽  
pp. 37-45
Author(s):  
N. A. Kostenikov ◽  
A. V. Pozdnyakov ◽  
A. A. Stanzhevskiy ◽  
A. A. Mihetko ◽  
Yu. R. Iliuschenko

The review presents an analysis of the literature on the diagnosis of brain tumors and the study of their structural and biological features based on application of nuclear imaging: single photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiopharmaceuticals (RPHs), especially amino acids (11C-L-methionine and 18F-FET). It is shown PET-CT and SPECT allow to noninvasively study the most important biochemical processes underlying the oncogenesis. The obtained data can be crucial for an early detection of tumor lesion, staging the pathological process, personalization of treatment, evaluation of the efficiency of therapy and prognosis of the oncologic disease outcome.

2019 ◽  
Vol 65 (3) ◽  
Author(s):  
Hanna Piwowarska-Bilska ◽  
Aleksandra Supińska ◽  
Jacek Iwanowski ◽  
Adriana Tyczyńska ◽  
Bożena Birkenfeld

Positron emission tomography (PET) is currently the most advanced diagnostic imaging technology along with well-known techniques like magnetic resonance imaging (MRI) and computed tomography (CT). Tremendous technical progress in engineering, imaging and radiopharmacy has provided the basis for impressive technological advances in the field of nuclear medicine over the past 50 years. Current nuclear medicine can be divided into 2 groups: the classic, which uses gamma-cameras for single photon emission computed tomography (SPECT) imaging, and the more modern PET technique. The clinical PET technique requires: (i) patient administration of the radiopharmaceutical labelled with a positron emitter, (ii) recording of the gamma radiation emitted from the patient’s body with a dedicated PET/ CT scanner, (iii) processing and analysis of recorded images. This article presents the basics of PET technology and research, and describes new technical trends introduced by the leading manufacturers of PET/CT scanners.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Natalie A. Bebbington ◽  
Bryan T. Haddock ◽  
Henrik Bertilsson ◽  
Eero Hippeläinen ◽  
Ellen M. Husby ◽  
...  

Abstract Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Han Feng ◽  
Xiaobo Wang ◽  
Jian Chen ◽  
Jing Cui ◽  
Tang Gao ◽  
...  

Glucose homeostasis plays a key role in numerous fundamental aspects of life, and its dysregulation is associated with many important diseases such as cancer. The atypical glucose metabolic phenomenon, known as the Warburg effect, has been recognized as a hallmark of cancer and serves as a promising target for tumor specific imaging. At present, 2-deoxy-2-[18F]fluoro-glucose (18F-FDG)-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for this purpose. The powerful impact of 18F-FDG has prompted intensive research efforts into other glucose-based radiopharmaceuticals for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Currently, glucose and its analogues have been labeled with various radionuclides such as 99mTc, 111In, 18F, 68Ga, and 64Cu and have been successfully investigated for tumor metabolic imaging in many preclinical studies. Moreover, 99mTc-ECDG has advanced into its early clinical trials and brings a new era of tumor imaging beyond 18F-FDG. In this review, preclinical and early clinical development of glucose-based radiopharmaceuticals for tumor metabolic imaging will be summarized.


2021 ◽  
Author(s):  
Chanchal Deep Kaur ◽  
Koushlesh Kumar Mishra ◽  
Anil Sahu ◽  
Rajnikant Panik ◽  
Pankaj Kashyap ◽  
...  

Malignancy and many inflammatory diseases have become a major concern for mankind over the years. The conventional therapy of these diseases lacks the effectiveness of the better diagnosis and targeted treatment of these diseases, but nuclear medicine can be regarded as a savior in the current scenario. Over the years, radioactivity of radioisotopes has been employed for treatment of many diseases. Nuclear medicines came up with radiopharmaceuticals that impart the ability to destroy specific diseased cells with high-energy-emitting radionuclides. Moreover, the emergence of theranostics, which is a combination of single drug used both for diagnostic as well as therapeutic purpose, has added a new feather in the field of nuclear medicines for providing a specific and personalized treatment to the patient. The current chapter discusses about techniques used for imaging of these radionuclides for better therapy and diagnosis of the root cause of the concerned disease by positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT as well as the advantages and disadvantages associated with them. It also describes about applications of theranostics and nuclear imaging in cancer treatment and their future perspective.


Author(s):  
N. A. Kostenikov ◽  
A. V. Pozdnyakov ◽  
V. F. Dubrovskaya ◽  
O. Yu. Mirolyubova ◽  
Yu. R. Ilyushchenko ◽  
...  

The review presents an analysis of the literature on the diagnosis of gliomas and the study of their structural and biological features based on implementation of new techniques in clinical practice of diagnostic imaging. These techniques include perfusion technologies for multislice spiral computed tomography (MSCT), magnetic resonance imaging (MRI), functional MRI, proton magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), and positron emission tomography (PET) with various radiopharmaceuticals (RPHs), first and foremost, labeled amino acids, such as11C-L-methionine and18F-Fluoroethyltyrosine. There is presented that with the application of these two methods (MRI and PET), the most important biochemical processes underlying oncogenesis of malignant tumors might be studied by non-invasive way. The obtained data can be crucial for an early detection of tumor lesions, staging the pathological process, rationale for therapeutic tactics, personalization of treatment, evaluation of the efficiency of therapy at early stages and prognosis of the disease result.


Author(s):  
Asma Rafique ◽  
Rashid Rasheed ◽  
Saba Shamim ◽  
Munazza Ijaz ◽  
Ghulam Murtaza

: Tuberculosis (TB) is an infectious disease and is declared a global health issue by the World Health Organization in 1993. Due to the complex pathophysiology of Mycobacterium tuberculosis, it remains a global threat. This article reviews the conventional diagnostic modalities for tuberculosis, their limitations to detect latent TB, multiple drug-resistant TB, human immunodeficiency virus co-infected TB lesions, and TB in children. Moreover, this review illustrates the importance of nuclear medicine imaging for early, non-invasive diagnosis of TB to detect disease stages and monitor therapy response. Currently, single-photon emission computed tomography and positron emission tomography with their specific radionuclides have been extensively used for a thorough assessment of TB.


2020 ◽  
Vol 34 (11) ◽  
pp. 799-806
Author(s):  
Koichiro Abe ◽  
Makoto Hosono ◽  
Takayuki Igarashi ◽  
Takashi Iimori ◽  
Masanobu Ishiguro ◽  
...  

Abstract The diagnostic reference levels (DRLs) are one of several effective tools for optimizing nuclear medicine examinations and reducing patient exposure. With the advances in imaging technology and alterations of examination protocols, the DRLs must be reviewed periodically. The first DRLs in Japan were established in 2015, and since 5 years have passed, it is time to review and revise the DRLs. We conducted a survey to investigate the administered activities of radiopharmaceuticals and the radiation doses of computed tomography (CT) in hybrid CT accompanied by single photon emission computed tomography (SPECT)/CT and positron emission tomography (PET)/CT. We distributed a Web-based survey to 915 nuclear medicine facilities throughout Japan and survey responses were provided by 256 nuclear medicine facilities (response rate 28%). We asked for the facility's median actual administered activity and median radiation dose of hybrid CT when SPECT/CT or PET/CT was performed for patients with standard habitus in the standard protocol of the facility for each nuclear medicine examination. We determined the new DRLs based on the 75th percentile referring to the 2015 DRLs, drug package inserts, and updated guidelines. The 2020 DRLs are almost the same as the 2015 DRLs, but for the relatively long-lived radionuclides, the DRLs are set low due to the changes in the Japanese delivery system. There are no items set higher than the previous values. Although the DRLs determined this time are roughly equivalent to the DRLs used in the US, overall they tend to be higher than the European DRLs. The DRLs of the radiation dose of CT in hybrid CT vary widely depending on each imaging site and the purpose of the examination.


Author(s):  
Allison C. Nugent ◽  
Maura L. Furey

Neuroscience research has clearly demonstrated neurological correlates of psychological disorders. We believe that neuroscience, particularly neuroimaging, has great potential to increase our understanding of these disorders, leading to more effective treatments, prevention, and perhaps even cure. Nevertheless, the popular media is replete with misinformation and exaggerated claims. The present chapter is intended to give the reader the necessary knowledge to critically evaluate neuroimaging studies of psychological disorders. We provide an overview of all the major neuroimaging techniques, example studies relevant to psychological disorders (with a particular emphasis on depression), particular pitfalls and caveats associated with each technique, and the promise of each technique. We first cover the nuclear imaging techniques, single photon emission computed tomography (SPECT) and positron emission tomography (PET). We then explore several magnetic resonance imaging (MRI) techniques, both structural and functional. Finally, we give an overview of the electrophysiological techniques, electroencephalography (EEG) and magnetoencephalography (MEG). Each of these techniques has particular strengths, and particular weaknesses. At this point, none of these tools are diagnostic, but each one provides a unique window into psychological disorders. When applied in a methodologically rigorous and statistically rigorous manner, neuroimaging has great promise for achieving greater understanding of psychological disorders, and relieving the great burdens they cause.


Author(s):  
Fulvio Lauretani ◽  
Yari Longobucco ◽  
Giulia Ravazzoni ◽  
Elena Gallini ◽  
Marco Salvi ◽  
...  

The neurobiology of Parkinson’s disease and its progression has been investigated during the last few decades. Braak et al. proposed neuropathological stages of this disease based on the recognizable topographical extent of Lewy body lesions. This pathological process involves specific brain areas with an ascending course from the brain stem to the cortex. Post-mortem studies are of importance to better understand not only the progression of motor symptoms, but also the involvement of other domains, including cognition and behavior. The correlation between the neuropathological expansion of the disease and the clinical phases remains demanding. Neuroimaging, including magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT), could help to bridge this existing gap by providing in vivo evidence of the extension of the disorders. In the last decade, we observed an overabundance of reports regarding the sensitivity of neuroimaging techniques. All these studies were aimed at improving the accuracy of Parkinson’s disease (PD) diagnosis and discriminating it from other causes of parkinsonism. In this review, we look at the recent literature concerning PD and address the new frontier of diagnostic accuracy in terms of identification of early stages of the disease and conventional neuroimaging techniques that, in vivo, are capable of photographing the basal ganglia network and its cerebral connections.


Sign in / Sign up

Export Citation Format

Share Document