A Review on Nuclear Imaging as a Promising Modality for Efficient Diagnosis of Tuberculosis

Author(s):  
Asma Rafique ◽  
Rashid Rasheed ◽  
Saba Shamim ◽  
Munazza Ijaz ◽  
Ghulam Murtaza

: Tuberculosis (TB) is an infectious disease and is declared a global health issue by the World Health Organization in 1993. Due to the complex pathophysiology of Mycobacterium tuberculosis, it remains a global threat. This article reviews the conventional diagnostic modalities for tuberculosis, their limitations to detect latent TB, multiple drug-resistant TB, human immunodeficiency virus co-infected TB lesions, and TB in children. Moreover, this review illustrates the importance of nuclear medicine imaging for early, non-invasive diagnosis of TB to detect disease stages and monitor therapy response. Currently, single-photon emission computed tomography and positron emission tomography with their specific radionuclides have been extensively used for a thorough assessment of TB.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Fan-Lin Kong ◽  
Richard J. Ford ◽  
David J. Yang

Nuclear medicine imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have played a prominent role in lymphoma management. PET with [18F]Fluoro-2-deoxy-D-glucose (FDG) is the most commonly used tool for lymphoma imaging. However, FDG-PET has several limitations that give the false positive or false negative diagnosis of lymphoma. Therefore, development of new radiotracers with higher sensitivity, specificity, and different uptake mechanism is in great demand in the management of lymphoma. This paper reviews non-FDG radiopharmaceuticals that have been applied for PET and SPECT imaging in patients with different types of lymphoma, with attention to diagnosis, staging, therapy response assessment, and surveillance for disease relapse. In addition, we introduce three radiolabeled anti-CD20 antibodies for radioimmunotherapy, which is another important arm for lymphoma treatment and management. Finally, the relatively promising radiotracers that are currently under preclinical development are also discussed in this paper.


2013 ◽  
pp. 159-166
Author(s):  
Giorgio Treglia ◽  
Ernesto Cason ◽  
Giorgio Fagioli

Introduction: Positron-emission tomography (PET) and single photon emission computed tomography (SPECT) are effective diagnostic imaging tools in several clinical settings. The aim of this article (the second of a 2-part series) is to examine some of the more recent applications of nuclear medicine imaging techniques, particularly in the fields of neurology, cardiology, and infection/inflammation. Discussion: A review of the literature reveals that in the field of neurology nuclear medicine techniques are most widely used to investigate cognitive deficits and dementia (particularly those associated with Alzheimer disease), epilepsy, and movement disorders. In cardiology, SPECT and PET also play important roles in the work-up of patients with coronary artery disease, providing accurate information on the state of the myocardium (perfusion, metabolism, and innervation). White blood cell scintigraphy and FDG-PET are widely used to investigate many infectious/inflammatory processes. In each of these areas, the review discusses the use of recently developed radiopharmaceuticals, the growth of tomographic nuclear medicine techniques, and the ways in which these advances are improving molecular imaging of biologic processes at the cellular level.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Han Feng ◽  
Xiaobo Wang ◽  
Jian Chen ◽  
Jing Cui ◽  
Tang Gao ◽  
...  

Glucose homeostasis plays a key role in numerous fundamental aspects of life, and its dysregulation is associated with many important diseases such as cancer. The atypical glucose metabolic phenomenon, known as the Warburg effect, has been recognized as a hallmark of cancer and serves as a promising target for tumor specific imaging. At present, 2-deoxy-2-[18F]fluoro-glucose (18F-FDG)-based positron emission tomography/computed tomography (PET/CT) represented the state-of-the-art radionuclide imaging technique for this purpose. The powerful impact of 18F-FDG has prompted intensive research efforts into other glucose-based radiopharmaceuticals for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Currently, glucose and its analogues have been labeled with various radionuclides such as 99mTc, 111In, 18F, 68Ga, and 64Cu and have been successfully investigated for tumor metabolic imaging in many preclinical studies. Moreover, 99mTc-ECDG has advanced into its early clinical trials and brings a new era of tumor imaging beyond 18F-FDG. In this review, preclinical and early clinical development of glucose-based radiopharmaceuticals for tumor metabolic imaging will be summarized.


2007 ◽  
Vol 50 (spe) ◽  
pp. 91-96 ◽  
Author(s):  
Camila Godinho Ribeiro ◽  
Regina Moura ◽  
Rosane de Figueiredo Neves ◽  
Jean Pierre Spinosa ◽  
Mario Bernardo-Filho

Functional imaging with positron emission tomography and single photon emission computed tomography is capable of visualizing subtle changes in physiological function in vivo. Erectile dysfunction(ED) diminishes quality of life for affected men and their partners. Identification of neural substrates may provide information regarding the pathophysiology of types of sexual dysfunction originating in the brain. The aim of this work is to verify the approaches of the nuclear medicine techniques in the evaluation of the erectile function/disfunction. A search using the words ED and nuclear medicine, ED and scintigraphy, ED and spect and ED and pet was done in the PubMed. The number of citations in each subject was determined. Neuroimaging techniques offer insight into brain regions involved in sexual arousal and inhibition. To tackle problems such as hyposexual disorders or ED caused by brain disorders, it is crucial to understand how the human brain controls sexual arousal and penile erection.


2021 ◽  
Author(s):  
Chanchal Deep Kaur ◽  
Koushlesh Kumar Mishra ◽  
Anil Sahu ◽  
Rajnikant Panik ◽  
Pankaj Kashyap ◽  
...  

Malignancy and many inflammatory diseases have become a major concern for mankind over the years. The conventional therapy of these diseases lacks the effectiveness of the better diagnosis and targeted treatment of these diseases, but nuclear medicine can be regarded as a savior in the current scenario. Over the years, radioactivity of radioisotopes has been employed for treatment of many diseases. Nuclear medicines came up with radiopharmaceuticals that impart the ability to destroy specific diseased cells with high-energy-emitting radionuclides. Moreover, the emergence of theranostics, which is a combination of single drug used both for diagnostic as well as therapeutic purpose, has added a new feather in the field of nuclear medicines for providing a specific and personalized treatment to the patient. The current chapter discusses about techniques used for imaging of these radionuclides for better therapy and diagnosis of the root cause of the concerned disease by positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT as well as the advantages and disadvantages associated with them. It also describes about applications of theranostics and nuclear imaging in cancer treatment and their future perspective.


2018 ◽  
Vol 11 (4) ◽  
pp. 106 ◽  
Author(s):  
Leila Hassanzadeh ◽  
Suxiang Chen ◽  
Rakesh Veedu

Aptamers are short single-stranded DNA or RNA oligonucleotide ligand molecules with a unique three-dimensional shape, capable of binding to a defined molecular target with high affinity and specificity. Since their discovery, aptamers have been developed for various applications, including molecular imaging, particularly nuclear imaging that holds the highest potential for the clinical translation of aptamer-based molecular imaging probes. Their easy laboratory production without any batch-to-batch variations, their high stability, their small size with no immunogenicity and toxicity, and their flexibility to incorporate various functionalities without compromising the target binding affinity and specificity make aptamers an attractive class of targeted-imaging agents. Aptamer technology has been utilized in nuclear medicine imaging techniques, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET), as highly sensitive and accurate biomedical imaging modalities towards clinical diagnostic applications. However, for aptamer-targeted PET and SPECT imaging, conjugation of appropriate radionuclides to aptamers is crucial. This review summarizes various strategies to link the radionuclides to chemically modified aptamers to accomplish aptamer-targeted PET and SPECT imaging.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Varvara Valotassiou ◽  
Anastasia Leondi ◽  
George Angelidis ◽  
Dimitrios Psimadas ◽  
Panagiotis Georgoulias

Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.


2019 ◽  
Vol 65 (3) ◽  
Author(s):  
Hanna Piwowarska-Bilska ◽  
Aleksandra Supińska ◽  
Jacek Iwanowski ◽  
Adriana Tyczyńska ◽  
Bożena Birkenfeld

Positron emission tomography (PET) is currently the most advanced diagnostic imaging technology along with well-known techniques like magnetic resonance imaging (MRI) and computed tomography (CT). Tremendous technical progress in engineering, imaging and radiopharmacy has provided the basis for impressive technological advances in the field of nuclear medicine over the past 50 years. Current nuclear medicine can be divided into 2 groups: the classic, which uses gamma-cameras for single photon emission computed tomography (SPECT) imaging, and the more modern PET technique. The clinical PET technique requires: (i) patient administration of the radiopharmaceutical labelled with a positron emitter, (ii) recording of the gamma radiation emitted from the patient’s body with a dedicated PET/ CT scanner, (iii) processing and analysis of recorded images. This article presents the basics of PET technology and research, and describes new technical trends introduced by the leading manufacturers of PET/CT scanners.


2012 ◽  
Vol 67 (9) ◽  
pp. 13-18 ◽  
Author(s):  
A. M. Granov ◽  
L. A. Tyutin ◽  
A. A. Stanzhevskii

Analysis of use of nuclear medicine imaging (positron emission tomography and single photon emission computed tomography) in diagnosis, differential diagnosis and evaluation of treatment efficacy of central nervous system diseases is presented in this review. The possibility of radionuclide imaging techniques in different variants of dementia, Parkinson's disease, brain tumors is demonstrated on the basis of personal authors experience and recent literature data. Results of PET application in evaluating of the effecacy of stereotactic interventions in patients with anxiety obsessive disorders are also described in the review. 


Sign in / Sign up

Export Citation Format

Share Document