scholarly journals Review on Evaluation of Rare Earth Metals and Rare Valuable Metals Contained in Coal Ash of Coal-fired Power Plants in Korea

2015 ◽  
Vol 1 (1) ◽  
pp. 121-125
Author(s):  
Seok-Un Park ◽  
Jae-Kwan Kim ◽  
Yeon-Seok Seo ◽  
Jun-Seok Hong ◽  
Hyoung-Beom Lee ◽  
...  
10.12737/716 ◽  
2013 ◽  
Vol 2 (4) ◽  
pp. 17-22 ◽  
Author(s):  
Петрова ◽  
E. Petrova ◽  
Виноградов ◽  
M. Vinogradov ◽  
Балина ◽  
...  

The flotation process of power plants’ ash-slag materials treatment is considered in the article. The original method related to preparing of ash-slag waste before their further bioleaching processing is proposed. The positive results of rare earth metals extraction efficiency increase by bioleaching are obtained. The essence of proposed approach is as follows. Coal combustion’s ash-slag waste is mixed with water to obtain a fine suspension, in which the carbonaceous reagent is injected. Flotation treatment of ash suspension is carried out in mechanical flotation machine with flotation time equal to 15-18 min and air flow rate equal to about 0.7-0.8 m3/(m2·min). The chamber product as treated ash suspension is going to the separation in open hydrocyclone. In such a case the concentration product in the form of ash product is derived to special site, and hydrocyclone overflow is directed to the clearing in pressure flotation machine for extraction of metal ions from the liquid. A positive effect of rare earth metals’ extraction rising related in particular to scandium about 26.6-30.3%, yttrium — 28-34.7%, lanthanum — 50.5-21.5%, as well as precious metals such as gold — 18.7-21.6%, silver — 11.4-21.4% is obtained.


2015 ◽  
Vol 24 (4) ◽  
pp. 67-75
Author(s):  
Seok-Un Park ◽  
Jae-Kwan Kim ◽  
Yeon-Seok Seo ◽  
Jun-Seok Hong ◽  
Hyoung-Beom Lee ◽  
...  

2011 ◽  
Vol 291-294 ◽  
pp. 1748-1751
Author(s):  
Ying Zhang ◽  
Chang Shui Liu ◽  
Lian Feng Gao ◽  
Zhen Guo Zhang ◽  
Peng Zhang

Rare earth metals are an important strategic resource. Due to scarce reserves, and large consumer demand, it is facing the crisis of resource depletion. Marine are the largest deposits sites in the world. In the long growth history, marine autogenic sedimentary mineral, such as polymetallic nodules, crusts with large quantities, not only contain the enrichment of Mn, Fe, Co, Cu, Ni and other valuable metals, but also contain extremely rare earth elements (REE) in the crust. Thus, in the process of developing marine mineral resources, Mn, Fe, Co, Cu, Ni and other metals are used, while it is possible for the development and utilization of the associated rare earth mineral. Marine may become a new field of rare earth resources development.


2019 ◽  
Vol 11 (9) ◽  
pp. 2562 ◽  
Author(s):  
Lai Tuan ◽  
Thriveni Thenepalli ◽  
Ramakrishna Chilakala ◽  
Hong Vu ◽  
Ji Ahn ◽  
...  

Coal-derived power comprises over 39% of the world’s power production. Therefore, a mass volume of coal combustion byproducts are generated and shifted the extra burden onto the economy and environment. Circulating fluidized bed combustion (CFBC) has been found to be a clean and ultimate technology for Korea’s coal-fired power plants to have effective power generation from low-grade imported coal with reduced emissions. Efforts have been made to broaden the utilization of CFBC coal ash, and to promote sustainable development of CFBC technology. Investigations provided numerous evidences for coal ash to be a potential deposit for rare earths reclamation. However, the basic characteristics and the methods of rare earth mining from the CFBC bottom ash lack detailed understanding and are poorly reported. This study highlighted an insight of the CBFC bottom ash with respect to REEs concentration. Moreover, agents were tested as a means for leaching REEs from Samcheok CFBC bottom ash. The leaching tests were performed in relation to variations in concentration, time and temperature. The results were applied to identify suitable processes to leach REEs from the ash and clarify the potential valuation of CFBC bottom ash. The leaching conditions attained by ANOVA analysis for hydrochloric concentration, temperature, and time of 2 mol L−1, 80 °C, and 12 h, were found to provide a maximum extraction of yttrium, neodymium and dysprosium of 62.1%, 55.5% and 65.2%, respectively.


2017 ◽  
Vol 2 (2) ◽  
pp. 168
Author(s):  
Vladimir Rychkov ◽  
Pertti Koukkari ◽  
Sergey Kirillov ◽  
Evgenii Kirillov

<p>In the production of fertilisers and commodity metals large amounts of stabilised waste is generated. Conventionally, manufacturing is targeted at the recovery of economically and technically most attractive key elements while the inorganic waste stream will gather all the other added-value chemical quantities. For example, substantial amounts of <em>rare earth metals</em>, which are increasingly used in various modern technologies including cleantech and photonics are present in <em>phosphogypsum</em>, the voluminous waste of the worldwide fertiliser industry. The waste heaps, while generally stabilised against weathering, appear usually granular or even as powder-like fines. Thus they represent a readily comminuted raw material for innovative mechanical, hydrometallurgical, biohydrometallurgical and pyrometallurgical techniques to recover considerable amounts of valuable metals and metal concentrates.</p>


2016 ◽  
Vol 5 (1) ◽  
pp. 48-55
Author(s):  
Сеник ◽  
E. Senik ◽  
Виноградов ◽  
M. Vinogradov ◽  
Таранов ◽  
...  

Problems related to rare earth metals leaching from coal ash and theirs ion-exchange concentration from sulfuric solutions, in particular the characteristics of scandium, yttrium and lanthanum sorption by different ion exchange resins have been considered in this work. It has been shown that the best way to leach rare earth metals from coal ash is a complex acid and biological treatment of ash waste. Kinetics related to the process of scandium, yttrium and lanthanum acid leaching from ash and slag waste of CHPP in Kumertau has been investigated. Subsequent metal solutions concentration was achieved using ion exchange resins. The results of experimental studies related to the processes of rare-earth metals (in particularly scandium) ion exchange concentration by cation exchange resin in the Naform PC-100 have been presented, as well as the results of experimental studies related to rare earth metals (scandium including) sedimentation process, using special sedimentators. Dependences of rare earth metals (in particular scandium) sedimentation efficiency against pH value have been constructed, and recommendations for pH values, that are optimal for rare earth metals sedimentation, have been given. Based on obtained experimental results it was created and tested an experimental laboratory prototype of plant for rare earth metals (scandium, yttrium and lanthanum including) extraction from located near Moscow brown coal basin’s slag heaps, and from ash dumps of Russian Federation’s energy enterprises. This plant’s process flow diagram as well as its operation description has been presented. The created plant was tested in modes previously fulfilled in laboratory conditions. At the same time, carried out integrated exploration have showed the prospects for implementation of developed technical solutions for processing of ash dumps of Russian Federation’s various energy enterprises.


1979 ◽  
Vol 40 (C5) ◽  
pp. C5-260-C5-261 ◽  
Author(s):  
M. Müller ◽  
E. Huber ◽  
H.-J. Güntherodt

1980 ◽  
Vol 41 (C1) ◽  
pp. C1-25-C1-31 ◽  
Author(s):  
N. S. Dixon ◽  
L. S. Fritz ◽  
Y. Mahmud ◽  
B. B. Triplett ◽  
S. S. Hanna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document