scholarly journals PROCEDIMIENTO PARA SELECCIÓN DE ACELEROGRAMAS PARA ESTUDIOS DE FRAGILIDAD EN PUENTES TÍPICOS DE ARGENTINA

2021 ◽  
pp. 76-111
Author(s):  
Jose Anibal Saracho ◽  
Gustavo Ariel Perez ◽  
Oscar Dip

Los acelerogramas adoptados para realizar estudios de fragilidad en puentes a través de análisis dinámico no lineal son uno de los componentes de mayor influencia en los resultados obtenidos. El objetivo de este trabajo es presentar una metodología para selección y escalado de acelerogramas reales de sismos registrados en distintas partes del mundo en ambientes tectónicos semejantes a los del centro-oeste argentino, de manera tal de contar con series de registros compatibles con espectros para distintas clases de sitio, zonas de peligrosidad sísmica y niveles de amenaza sísmica. Para ello, se hizo uso de la aplicación web de la base de datos de movimientos sísmicos del PEER (Pacific Earthquake Engineering Research Center’s). Se tomaron en consideración los espectros objetivos y distintos parámetros, tales como: magnitud del sismo, tipo de falla, distancia de la estructura a la falla, velocidad media de la onda de corte en los 30 metros superiores del terreno, etc. Mediante la aplicación de un criterio novedoso, en el cual se contempla la Intensidad de Aceleración Espectral (ASI), se arribó a 16 series de sismos considerando: 4 clases de sitio, zonas de elevada y muy peligrosidad sísmica del territorio nacional y periodos de recurrencia de 500 y 2500 años. Estas series de registros representativas de la sismicidad de la región referida podrán utilizarse luego para obtener curvas de fragilidad de mayor confiabilidad para distintas clases de puentes típicos.

2017 ◽  
Vol 62 (1) ◽  
pp. 102-111
Author(s):  
Abdelhalim Airouche ◽  
Hassan Aknouche ◽  
Hakim Bechtoula ◽  
Nourredine Mezouer ◽  
Abderrahmane Kibboua

Shaking table testing continues to play an important role in earthquake engineering research. It has been recognized as a powerful testing method to evaluate structural components and systems under realistic dynamic loads. Although it represents a very attractive experimental procedure, many technical challenges, which require attention and consideration, still remain. High fidelity in signal reproduction is the focus of the work presented in this paper. The main objective of this paper is to investigate the capabilities of adaptive control techniques based on Amplitude Phase Control (APC) and Adaptive Harmonic Cancellation (AHC) on the harmonic signal tracking performance of the shaking table. A series of 232 sinusoidal command waveforms with various frequencies and amplitudes were conducted on the shaking table of the laboratory of the National Earthquake Engineering Applied Research Center (CGS, Algeria). Experimental results are reported and recommendations on the use of these adaptive control techniques are discussed.


2018 ◽  
Vol 1145 ◽  
pp. 134-139
Author(s):  
Raghabendra Yadav ◽  
Bao Chun Chen ◽  
Hui Hui Yuan ◽  
Zhi Bin Lian

The dynamic testing of large-scale structures continues to play a significant role in earthquake engineering research. The pseudo- dynamic test (PDT) is an experimental technique for simulating the earthquake response of structures and structural components in time domain. A CFST-RC pier is a modified form of CFST laced column in which CFST members are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST -RC pier is tested under three different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Chamoli, Gorkha and Wenchuan ground motions are observed as 12, 10 and 10 respectively. The frequency of the pier is found to be 1.42 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.


2018 ◽  
Vol 34 (4) ◽  
pp. 1671-1691 ◽  
Author(s):  
Silvia Mazzoni ◽  
Giulio Castori ◽  
Carmine Galasso ◽  
Paolo Calvi ◽  
Richard Dreyer ◽  
...  

The 2016–2017 Central Italy earthquake sequence consisted of several moderately high-magnitude earthquakes, between M5.5 and M6.5, each centered in a different location and with its own sequences of aftershocks spanning several months. To study the effects of this earthquake sequence on the built environment and the impact on the communities, a collaborative reconnaissance effort was organized by the Earthquake Engineering Research Institute (EERI), the Eucentre Foundation, the European Centre for Training and Research in Earthquake Engineering (EUCentre), and the Rete dei Laboratori Universitari di Ingegneria Sismica (ReLuis). The effort consisted of two reconnaissance missions: one following the Amatrice Earthquake of 24 August 2016 and one after the end of the earthquake sequence, in May 2017. One objective of the reconnaissance effort was to evaluate existing strengthening methodologies and assess their effectiveness in mitigating the damaging effects of ground shaking. Parallel studies by the Geotechnical Extreme Events Reconnaissance (GEER) Association, presented in a companion paper, demonstrate that variations in-ground motions due to topographic site effects had a significant impact on damage distribution in the affected area. This paper presents that, in addition to these ground motion variations, variations in the vulnerability of residential and critical facilities were observed to have a significant impact on the level of damage in the region. The damage to the historical centers of Amatrice and Norcia will be used in this evaluation: the historical center of Amatrice was devastated by the sequence of earthquakes; the significant damage in Norcia was localized to individual buildings. Amatrice has not experienced the same number of devastating earthquakes as Norcia in the last 150 years. As a result, its building stock is much older than that of Norcia and there appeared to be little visual evidence of strengthening of the buildings. The distribution of damage observed throughout the region was found to be indicative of the effectiveness of strengthening and of the need for a comprehensive implementation of retrofit policies.


2005 ◽  
Vol 21 (1_suppl) ◽  
pp. 207-212 ◽  
Author(s):  
Ronald T. Eguchi ◽  
Babak Mansouri

This preface introduces a series of papers that describe the use of remote sensing technologies in quantifying the extent of building damage after the 2003 Bam, Iran, earthquake. These papers represent a significant milestone in post-earthquake loss estimation. For the first time, independent evaluations of regional damage are documented, which will ultimately allow an assessment of the efficacy of these technologies as tools for post-earthquake damage detection and quantification. Not only were different sensors used, but radically different approaches were implemented in quantifying damage. The conclusions and recommendations of the different papers are generally consistent and strongly suggest that regional damage assessment using remotely sensed data is highly feasible. The papers, however, acknowledge that more research is needed before these technologies can be used to make critical emergency response decisions. Finally, the role of the Earthquake Engineering Research Institute through its Learning From Earthquakes Program is acknowledged, largely for helping to promote the use of remote sensing technologies in earthquake studies and for recognizing the value of collaboration through its newly formed Subcommittee on Remote Sensing.


2014 ◽  
Vol 30 (3) ◽  
pp. 973-987 ◽  
Author(s):  
Yousef Bozorgnia ◽  
Norman A. Abrahamson ◽  
Linda Al Atik ◽  
Timothy D. Ancheta ◽  
Gail M. Atkinson ◽  
...  

The NGA-West2 project is a large multidisciplinary, multi-year research program on the Next Generation Attenuation (NGA) models for shallow crustal earthquakes in active tectonic regions. The research project has been coordinated by the Pacific Earthquake Engineering Research Center (PEER), with extensive technical interactions among many individuals and organizations. NGA-West2 addresses several key issues in ground-motion seismic hazard, including updating the NGA database for a magnitude range of 3.0–7.9; updating NGA ground-motion prediction equations (GMPEs) for the “average” horizontal component; scaling response spectra for damping values other than 5%; quantifying the effects of directivity and directionality for horizontal ground motion; resolving discrepancies between the NGA and the National Earthquake Hazards Reduction Program (NEHRP) site amplification factors; analysis of epistemic uncertainty for NGA GMPEs; and developing GMPEs for vertical ground motion. This paper presents an overview of the NGA-West2 research program and its subprojects.


1998 ◽  
Vol 35 (3) ◽  
pp. 442-459 ◽  
Author(s):  
P K Robertson ◽  
CE (Fear) Wride

Soil liquefaction is a major concern for structures constructed with or on sandy soils. This paper describes the phenomena of soil liquefaction, reviews suitable definitions, and provides an update on methods to evaluate cyclic liquefaction using the cone penetration test (CPT). A method is described to estimate grain characteristics directly from the CPT and to incorporate this into one of the methods for evaluating resistance to cyclic loading. A worked example is also provided, illustrating how the continuous nature of the CPT can provide a good evaluation of cyclic liquefaction potential, on an overall profile basis. This paper forms part of the final submission by the authors to the proceedings of the 1996 National Center for Earthquake Engineering Research workshop on evaluation of liquefaction resistance of soils.Key words: cyclic liquefaction, sandy soils, cone penetration test


Sign in / Sign up

Export Citation Format

Share Document