scholarly journals Semi-quantitative risk assessment of health exposure to hazardous chemical agents in a petrochemical plant

2015 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
MH Beheshti ◽  
A Firoozi chahak ◽  
AA Alinaghi Langari ◽  
S Rostami ◽  
◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huyen Thi Thu Do ◽  
Tram Thi Bich Ly ◽  
Tho Tien Do

Abstract In this study, a combination of semi-quantitative risk assessment, composite indicator and fuzzy logic has been developed to identify industrial establishments and processes that represent potential environmental accidents associated with hazardous chemicals. The proposed method takes into consideration the root causes of risk probability of hazardous chemical accidents (HCAs), such as unsafe onsite storing and usage, inadequate operation training, poor safety management and analysis, equipment failure, and factors affected by the potential consequences of the accidents, including human health, water resources, and building and construction. These issues have been aggregated in a system of criteria and sub-criteria, demonstrated by a list of non-overlapping and exhaustive categorical terms. Semi-quantitative risk assessment is then applied to develop a framework for screening industrial establishments that exhibit potential HCAs. Fuzzy set theory with triangular fuzzy number deals with the uncertainty associated with the data input and reduces the influence of subjectivity and vagueness to the final results. The proposed method was tested among 77 industrial establishments located within the industrial zones of Ho Chi Minh City, Vietnam. Eighteen establishments were categorized as high HCA risk, 36 establishments were categorized as medium HCA risk, and 23 ones were of low HCA risk. The results are compatible with the practical chemical safety situation of the establishments and are consistent with expert evaluation.


Author(s):  
Petr Trávníček ◽  
Luboš Kotek ◽  
Tomáš Koutný ◽  
Tomáš Vítěz

Biogas plants are a specific facility from the QRA (Quantitative Risk Assessment) methodologies' point of view, especially in the case of the determination of the event frequency of accident scenarios for biogas leakage from a gas holder and subsequent initiation. QRA methodologies determine event frequencies for different types of accident events related to vessels made of steel. Gas holders installed at biogas plants are predominantly made of other materials and are often integrated with the fermenter. It is therefore a specific type of gas holder, differing from that which is commonly used in the chemical industry. In addition, long-term experience is not available for the operation of biogas plants, unlike in the chemical industry. The event frequencies listed in the QRA methodologies are not relevant for the risk assessment of biogas plants. This work is focused on setting the prerequisites for QRA of biogas storage, including for example: information on hazardous chemical substances occurring at biogas plants, their classification, and information on the construction of integrated gas holders. For the purpose of the work, a scenario was applied where the greatest damage (to life or property) is expected. This scenario is the leakage of the total volume of hazardous gas substance from the gas holder and subsequent initiation. Based on this information, a "tree" was processed for "Fault Tree Analysis" (FTA), and frequencies were estimated for each event. Thereafter, an "Event Tree Analysis" was carried out. This work follows up on a discussion by experts on the determination of scenario frequencies for biogas plants that was conducted in the past.


Author(s):  
Mohammad Javad JAFARI ◽  
Rahman BAHMANI ◽  
Mostafa POYAKIAN ◽  
Yaser KHORSHIDI BEHZADI ◽  
Soheila KHODAKRIM

Introduction: Each year, many accidents occur in processing industries such as oil, gas, and petrochemicals. Processing industries mostly work with hazardous chemicals and units in high temperature and high-pressure conditions like reactors and storage tanks. The study aimed to model the consequences of a complete tank rapture (explosion and fire) and specify the intensity caused by the events. Materials and methods: The applied method in this study was based on the Quantitative Risk Assessment method. This method is used for risk assessment in chemical, petroleum, gas, and petrochemical processes and transport industries. Initially, the process associated with the monomer vinyl-chloride storage tank was identified. At the next stage, the scenarios and probable hazards were identified and defined and the PHAST Risk 7.11 was run for modeling the consequences. Results: The most dangerous consequences of vinyl-chloride storage tanks include sudden fire and explosion in a complete tank rapture. In a full tank-explosion, the radiation of the explosion wave was once recorded as 79 meters with the death probability of 99 percent. Conclusion: Each explosion or probable rapture in monomer vinyl-chloride tanks may cause terrible consequences. The vinyl-chloride monomer storage process is a high-risk process that is not tolerable. To reduce the risk, the consequence intensity, the consequence probability, and the exposure amount should be reduced. To this end, it is highly recommended to use smaller tanks, modify operational variables (capacity, pressure, temperature, etc.), and reduce the level of exposure in similar projects.


2013 ◽  
Vol 19 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Song YANG ◽  
Shuqin WU ◽  
Ningqiu LI ◽  
Cunbin SHI ◽  
Guocheng DENG ◽  
...  

1997 ◽  
Vol 35 (11-12) ◽  
pp. 29-34 ◽  
Author(s):  
P. Teunis ◽  
A. Havelaar ◽  
J. Vliegenthart ◽  
G. Roessink

Shellfish are frequently contaminated by Campylobacter spp, presumably originating from faeces from gulls feeding in the growing or relaying waters. The possible health effects of eating contaminated shellfish were estimated by quantitative risk assessment. A paucity of data was encountered necessitating many assumptions to complete the risk estimate. The level of Campylobacter spp in shellfish meat was calculated on the basis of a five-tube, single dilution MPN and was strongly season-dependent. The contamination level of mussels (<1/g) appeared to be higher than in oysters. The usual steaming process of mussels was found to completely inactivate Campylobacter spp so that risks are restricted to raw/undercooked shellfish. Consumption data were estimated on the basis of the usual size of a portion of raw shellfish and the weight of meat/individual animal. Using these data, season-dependent dose-distributions could be estimated. The dominant species in Dutch shellfish is C. lari but little is known on its infectivity for man. As a worst case assumption, it was assumed that the infectivity was similar to C. jejuni. A published dose-response model for Campylobacter-infection of volunteers is available but with considerable uncertainty in the low dose region. Using Monte Carlo simulation, risk estimates were constructed. The consumption of a single portion of raw shellfish resulted in a risk of infection of 5–20% for mussels (depending on season; 95% CI 0.01–60%). Repeated (e.g. monthly) exposures throughout a year resulted in an infection risk of 60% (95% CI 7–99%). Risks for oysters were slightly lower than for mussels. It can be concluded that, under the assumptions made, the risk of infection with Campylobacter spp by eating of raw shellfish is substantial. Quantitative risk estimates are highly demanding for the availability and quality of experimental data, and many research needs were identified.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Pete Burnap ◽  
Omar Santos

AbstractThe Internet-of-Things (IoT) triggers data protection questions and new types of cyber risks. Cyber risk regulations for the IoT, however, are still in their infancy. This is concerning, because companies integrating IoT devices and services need to perform a self-assessment of its IoT cyber security posture. At present, there are no self-assessment methods for quantifying IoT cyber risk posture. It is considered that IoT represent a complex system with too many uncontrollable risk states for quantitative risk assessment. To enable quantitative risk assessment of uncontrollable risk states in complex and coupled IoT systems, a new epistemological equation is designed and tested though comparative and empirical analysis. The comparative analysis is conducted on national digital strategies, followed by an empirical analysis of cyber risk assessment approaches. The results from the analysis present the current and a target state for IoT systems, followed by a transformation roadmap, describing how IoT systems can achieve the target state with a new epistemological analysis model. The new epistemological analysis approach enables the assessment of uncontrollable risk states in complex IoT systems—which begin to resemble artificial intelligence—and can be used for a quantitative self-assessment of IoT cyber risk posture.


2021 ◽  
Vol 11 (11) ◽  
pp. 5208
Author(s):  
Jianpo Liu ◽  
Hongxu Shi ◽  
Ren Wang ◽  
Yingtao Si ◽  
Dengcheng Wei ◽  
...  

The spatial and temporal distribution of tunnel failure is very complex due to geologic heterogeneity and variability in both mining processes and tunnel arrangement in deep metal mines. In this paper, the quantitative risk assessment for deep tunnel failure was performed using a normal cloud model at the Ashele copper mine, China. This was completed by considering the evaluation indexes of geological condition, mining process, and microseismic data. A weighted distribution of evaluation indexes was determined by implementation of an entropy weight method to reveal the primary parameters controlling tunnel failure. Additionally, the damage levels of the tunnel were quantitatively assigned by computing the degree of membership that different damage levels had, based on the expectation normalization method. The methods of maximum membership principle, comprehensive evaluation value, and fuzzy entropy were considered to determine the tunnel damage levels and risk of occurrence. The application of this method at the Ashele copper mine demonstrates that it meets the requirement of risk assessment for deep tunnel failure and can provide a basis for large-scale regional tunnel failure control in deep metal mines.


Sign in / Sign up

Export Citation Format

Share Document