Mobility in Human Aging A Multidisciplinary Life Span Conceptual Framework

2013 ◽  
Vol 33 (1) ◽  
pp. 171-192 ◽  
Author(s):  
Luigi Ferrucci ◽  
Jack M. Guralnik
1994 ◽  
Vol 2 (4) ◽  
pp. 304-328 ◽  
Author(s):  
George T. Baker ◽  
George R. Martin

Aging is characterized by numerous physical, physiological, biochemical, and molecular changes. The rates at which aging processes occur are highly variable among individuals and are thought to be governed by both environmental and genetic factors. Lifestyle factors such as exercise, dietary, and smoking habits have been demonstrated to alter many of the changes usually associated with human aging. However, at present caloric restriction is the only experimental paradigm that has consistently been demonstrated in animal models to extend not only physiological vigor but also life span. The positive effects of exercise on physiological fitness and the reduction in the risks of certain diseases have been well documented. However, its effects on life span are not as clear. This article explores some of the basic mechanisms thought to be involved causally in the processes of aging, and outlines current and potential interventive strategies to retard or ameliorate the rates of decline in physiological function with advancing age.


Physiology ◽  
1992 ◽  
Vol 7 (4) ◽  
pp. 157-160
Author(s):  
EJ Masoro

Reducing energy intake of laboratory rodents extends life span by retarding aging processes. This manipulation provides gerontologists with a powerful tool for studying the nature of aging processes. It also yields a data base of potential use for the development of interventions in human aging.


2003 ◽  
Vol 67 (3) ◽  
pp. 376-399 ◽  
Author(s):  
Kevin J. Bitterman ◽  
Oliver Medvedik ◽  
David A. Sinclair

SUMMARY When it was first proposed that the budding yeast Saccharomyces cerevisiae might serve as a model for human aging in 1959, the suggestion was met with considerable skepticism. Although yeast had proved a valuable model for understanding basic cellular processes in humans, it was difficult to accept that such a simple unicellular organism could provide information about human aging, one of the most complex of biological phenomena. While it is true that causes of aging are likely to be multifarious, there is a growing realization that all eukaryotes possess surprisingly conserved longevity pathways that govern the pace of aging. This realization has come, in part, from studies of S. cerevisiae, which has emerged as a highly informative and respected model for the study of life span regulation. Genomic instability has been identified as a major cause of aging, and over a dozen longevity genes have now been identified that suppress it. Here we present the key discoveries in the yeast-aging field, regarding both the replicative and chronological measures of life span in this organism. We discuss the implications of these findings not only for mammalian longevity but also for other key aspects of cell biology, including cell survival, the relationship between chromatin structure and genome stability, and the effect of internal and external environments on cellular defense pathways. We focus on the regulation of replicative life span, since recent findings have shed considerable light on the mechanisms controlling this process. We also present the specific methods used to study aging and longevity regulation in S. cerevisiae.


2021 ◽  
Vol 13 ◽  
Author(s):  
Shuichi Yanai ◽  
Shogo Endo

Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.


Sign in / Sign up

Export Citation Format

Share Document