Factors that Influence the Acetylating Activity of Blood 3. Effect of Adrenal-Cortical Hormone on Acetylating of PABA

1963 ◽  
Vol 34 (3) ◽  
pp. 285-289 ◽  
Author(s):  
A. Tsunemitsu ◽  
L. S. Fosdick
Blood ◽  
1948 ◽  
Vol 3 (7) ◽  
pp. 729-754 ◽  
Author(s):  
WILLIAM N. VALENTINE ◽  
CHARLES G. CRADDOCK ◽  
JOHN S. LAWRENCE

Abstract The hormonal control through the hypophyseo-adrenal cortical system of lymphoid tissue structure and function is an important concept. We cannot at the present time regard that the concept is established fact. Final judgment must await additional work and the clarification of some of the inconsistencies which appear to exist. It seems reasonable that lymphoid tissue is one of the end organs of adrenal cortical hormone and that it may perhaps play a role in the response of the organism to stress. It seems quite clear that the sugar hormone of the adrenal cortex is capable of producing structural alterations in lymphoid tissue. Change in thoracic duct lymphocyte numbers as a result of augmentation in the amount of available adrenal cortical hormone is at present controversial. Experiments in this laboratory have failed to demonstrate it. The production of lymphopenia, at least in some species and possibly in man, by increasing available sugar hormone is supported by some evidence. The exact mechanism of production of lymphopenia is open to question, its relationship to changes in lymphoid tissue structure being one of inference. The converse situation—absolute lympocytosis resulting from deprivation of adrenal cortical hormone—is the subject of controversial reports. At best, it must be admitted that relatively slight alterations from the accepted normal range of lymphocyte values occur in the adrenal insufficient organism. Changes in plasma gamma globulins and antibody titers associated with changes in the amount of available cortical hormone are reported. It should be clarified whether such changes have necessarily resulted from lymphocyte dissolution or are related to other of the variegated actions of adrenal cortical hormone. The relationship of adrenal cortical hormone to lymphoid tissue and lymphocytes and the relationship of the latter to the response of the organism to stress must indeed be complex. It is reasonably well established that the life span of the lymphocyte is very short indeed1,58,22 and each lymphocyte presumably liberates its metabolically important contents within a few hours at the most. If stress continues for any period of time, as often it does, it is difficult to visualize the wisdom of interfering with the production of metabolically vital substances in order to secure the transient benefits of lymphoid tissue dissolution. It is also somewhat difficult to regard as proved that the various changes reported after hormone augmentation or deprivation necessarily represent the normal mechanism by which these factors are regulated and kept within physiologic limits. More investigations are required to answer such questions and to further elucidate the interrelationship of the adrenal cortex and lymphoid tissues.


Nature ◽  
1937 ◽  
Vol 139 (3505) ◽  
pp. 26-26 ◽  
Author(s):  
P. DE FREMERY ◽  
E. LAQUEUR ◽  
T. REICHSTEIN ◽  
R. W. SPANHOFF ◽  
I. E. UYLDERT

1993 ◽  
Vol 264 (6) ◽  
pp. C1367-C1387 ◽  
Author(s):  
M. P. Blaustein

Ouabain is a well-known compound but a newly discovered adrenal cortical hormone that plays a role in cell Na+ regulation and in whole body salt and water balance. Ouabain may also be a paracrine hormone and may be secreted by some central nervous system neurons as well as by other types of cells. This article focuses on the cellular mechanisms that underlie the physiological (and pathophysiological) effects of ouabain. Ouabain directly inhibits the plasmalemmal Na+ pump in a variety of cell types. Low ouabain concentrations cause, in the steady state, a modest rise in the cytosolic Na+ concentration but only a minimal decline in membrane potential. All Na+ gradient-dependent processes may thereby be affected, albeit to only a small extent. Most important, however, is the secondary redistribution of Ca2+, mediated by Na(+)-Ca2+ exchange, that should slightly increase the cytosolic free Ca2+ concentration ([Ca2+]cyt). As a result of Ca2+ sequestration in intracellular stores [the endoplasmic and/or sarcoplasmic reticulum (ER/SR)], however, a new steady state is achieved with a slightly increased [Ca2+]cyt but a substantially augmented Ca2+ store; thus the ER/SR effectively acts as a Ca2+ amplifier. This extra stored Ca2+ is then available for mobilization whenever the cells are activated. Cytosolic Ca2+ is a key signaling mechanism in virtually all cells: it controls numerous physiological processes such as contraction, secretion, and excitability. Thus ouabain may modulate cell responsiveness via its influence on ER/SR Ca2+ stores. With these principles in mind, we examine evidence that endogenous ouabain may play a role in numerous physiological and pathophysiological processes associated with altered fluid and electrolyte metabolism and deviations from the normal blood pressure-blood volume relationship. We discuss the possible participation of ouabain in the regulation of vascular tone and then consider the putative role of ouabain in several forms of hypertension, congestive heart failure, thyroid and adrenocortical dysfunction, and diabetes mellitus, as well as in the adaptation to high altitude.


Science ◽  
1933 ◽  
Vol 77 (1985) ◽  
pp. 58-64 ◽  
Author(s):  
W. W. Swingle ◽  
J. J. Pfiffner ◽  
H. M. Vars ◽  
P. A. Bott ◽  
W. M. Parkins

1932 ◽  
Vol 29 (9) ◽  
pp. 1267-1268
Author(s):  
J. J. Pfiffner ◽  
H. M. Vars ◽  
P. A. Bott ◽  
W. W. Swingle

Sign in / Sign up

Export Citation Format

Share Document