scholarly journals Effects of the bendazol fungicide on in vitro development of the nim (Azadirachta indica A. JUSS)

2016 ◽  
Vol 7 ◽  
Author(s):  
Elisabete Pacheco Dos Santos ◽  
Robson Antonio De Souza ◽  
Maria Jaislanny Lacerda e Medeiros ◽  
Gilberto Dias Alves ◽  
Laureen Michelle Houllou

Two experiments were conducted to evaluate Bendazol fungicidal effects in neem micropropagation. In these experiments, the nodal segment explants from <em>in vitro</em> plants were used. In the first experiment, the explants remained in DKW culture medium for a period of 30 days containing different concentrations of Bendazol (M1 -50, M2 - 100, M3 - 200, and M4 - 400 mg.L<sup>-1</sup>). The control treatment (M0) was prepared with DKW medium + BAP (0.225 mg.L<sup>-1</sup>). In the second experiment, the explants were maintained for only one week in media supplemented with Bendazol or BAP, and then they were transferred and kept in free Bendazol/BAP media for three weeks. In each experiment, the design was completely randomized with five treatments, 10 replicates per treatment, and one explant/cultivation flask.  The variables analyzed included the formation of calluses and roots, lateral bud development, shoot height, contamination and plant death. There was no significant difference in tree variables (shoot, callus formation and shoot height) between treatments in both experiments. There was no death, plant contamination and rooting during the experiment. The results indicate that Bendazol can be used at low doses for <em>in vitro</em> neem cloning thereby replacing BAP and ultimately reducing production costs.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 501D-501
Author(s):  
M.H. Aboul-Nasr ◽  
S.Z. Elagamy ◽  
A.M. Kassim

Three strawberry cultivars were used in this study. Runners from the three cultivars were grown on Murashige and Skoog medium supplemented with benzylaminpurine or kinetin at four concentrations (2, 1, 0.5, and 0.25 mg·L-1 in addition to the control treatment). The use of cytokinin, regardless of type and concentration, promoted the explant proliferation, shoot height, number of leaves, and plantlet fresh weight. Callus formation was enhanced by BA application, especially with `Pajaro'. However, `Chandler' did not form at all using cytokinin. Produced plantlets had lower nutrient constituents (N, P, K, Ca, and Na) when grown on media containing cytokinin compared to the control. Based on these results, cytokinin is recommended to get more shoots per explant. Furthermore, using the lowest concentration (0.25 mg·L-1) will produce height proliferation, greater shoot length, and more leaves.


2021 ◽  
Vol 9 (33) ◽  
pp. 147-155
Author(s):  
Solange Monteiro de Toledo Piza Gomes Carneiro ◽  
Euclides Davidson Bueno Romano ◽  
Erika Pignoni ◽  
Marcus Zulian Teixeira ◽  
Maria Elizabeth da Costa Vasconcelos ◽  
...  

Background: homeopathy is a means permitted in organic agriculture to control disease and plagues; biotherapics are a practical means for farmers to intervene on the health of plants in agro-ecological systems of production. Tomato-plants can be affected by several diseases, one of the most significant ones in Brazil is early blight, caused by fungus Alternaria solani, due to the damage it causes and its wide distribution in the country. Aims: to establish whether a biotherapic of A. solani may interfere on the in vitro development of the fungus and whether it affects the severity of early blight on tomato-plants in greenhouse. Methods: the effect of the biotherapic on the fungus was evaluated through the percentage of germinated spores under microscope and the growth of colonies in a culture medium. Treatments used were: biotherapic 26cH, 27cH, 28cH, 29cH and 30cH; sterilized distilled water; and diluted and agitated hydroalcoholic solution. The effect of the biotherapic on the development of disease was evaluated in 4 experiments in greenhouse. Plants were kept in vases and subjected to artificial inoculation of the fungus after the application of treatments. Evaluation of disease was carried out through diagrammatic scale. Results: no treatment affected the germination of spores or the development of fungus colonies in the culture medium. In the first test, treatment 26cH differed from water in Tukey’s test at 5% but did not differed from diluted and agitated hydroalcoholic solution. In the second test, treatments 27cH and 28cH showed significant difference from both water and hydroalcoholic solution with an average control of disease of 57% and 62% respectively. The other 2 tests did nor exhibit any significant effect. Conclusions: there was no direct effect of the biotherapic on the fungus, but there was an effect on the severity of the disease. Factors affecting the efficiency of the biotherapic must be better understood before it can be recommended to farmers for the management of early blight in tomato-plants.


2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Jéssica Dutra Vieira ◽  
Paulo Roberto Diniz Da Silva ◽  
Valdir Marcos Stefenon

The indoleacetic acid produced by symbiotic bacteria is an important phytohormone signaling microbe-plant interaction, being therefore essential for rhizoremediation. In this study, the effect of different concentrations of copper ions on the bacterial growth and indoleacetic acid production was investigated in two strains of Mesorhizobium loti in in vitro conditions, aiming to determine critical concentrations of this heavy metal for rhizoremediation of contaminated soils using this bacterium. The experiment consisted on a control culture without copper and three treatments supplemented with 10 mg.L-1, 20 mg.L-1 or 50 mg.L-1 of CuSO4. For both strains, the growth stopped after 48h and no significant difference was observed across treatments. The production of indoleacetic acid by the control treatment without copper was significantly higher in comparison to the copper- containing treatments. Mesorhizobium loti SEMIA806 and SEMIA816 are resistant to up to 50 mg.L-1 of CuSO4 in the culture medium, presenting effective growth. The synthesis of indoleacetic acid was strongly reduced but not excluded by ions copper in the medium. So, it is expected that environmental copper found in the soil up to the concentration of 50 mg.L-1 will not preclude the symbiotic interaction between M. loti and leguminous host plant in rhizoremediation enterprises.


2004 ◽  
Vol 16 (2) ◽  
pp. 154
Author(s):  
H.S. Park ◽  
M.Y. Lee ◽  
S.P. Hong ◽  
J.I. Jin ◽  
J.K. Park ◽  
...  

Recent techniques in somatic cell nuclear transfer (SCNT) have been widely used for animal research. In addition, SCNT techniques may allow for the rescue of endangered species. Despite efforts for wildlife preservation, however, some threatened or endangered wild animal species will likely become extinct. As a preliminary experiment of a series in wildlife research, we tried to identify an improved method for the production of more transferable NT embryos in goats. Mature donor animals of Korean native goats (20–25kg) were synchronized with a CIDR (type G; InterAg, New Zealand) vaginal implant for 10 days followed by a total of 8 twice daily injections of 70mg of FSH (Folltropine, London, Ontario, Canada) and 400IU of hCG (Chorulon, Intervet, Moxmeer, The Netherlands). Oocytes were then collected surgically by retograde oviduct flush or direct aspiration from ovarian follicles in vivo at 29–34h after hCG. Oocytes collected from follicles were matured in TCM-199 containing 10% FBS and hormones. Prepared ear skin cells from the goat were cultured in TCM-199 containing 10% FBS at 39°C, 5% CO2 in air, and confluent monolayers were obtained. Oocytes were enucleated and donor cells from serum starvation (0.5%) culture were fused through a single electric pulse (DC 2.36kvcm−1, 17μs), and then activated by a single electric pulse (AC 5vmm−1, 5s+DC 1.56kvcm−1, 30μs) or chemical treatment (5μgmL−1 ionomycin 5min−1, 1.9mM 6-DMAP/4h). Reconstructed oocytes were cultured in M16 medium with 10% goat serum (GS) for 6–7 days. Data were analyzed by chi-square test. In in vitro development, significantly (P&lt;0.05) more oocytes were cleaved (24/30, 80.0%) and developed (7/24, 29.2%) to morula or blastocyst stage, respectively, in NT oocytes activated by Iono + DMAP compared to electric stimulated oocytes (2/21, 40.0%; 0/2, 0%). There was a significant difference in in vitro development of NT embryos by the method of oocyte collection. Cleavage rate was higher (P&lt;0.05) in NT embryos from in vivo oocytes (23/28, 82.1%) than in in vitro matured oocytes (19/35, 54.3%), and further development to morula or blastocyst was also significantly (P&lt;0.05%) higher in NT embryos from in vivo oocytes (7/23, 30.4%) than in NT embryos from in vitro matured oocytes (0/19, 0%). When we compared NT embryos to parthenotes, developmental rate was not significantly different between NT embryos and parthenotes. These results strongly suggest that the in vivo oocytes will have superior developmental potential to oocytes matured in vitro. Table 1 Effect of different oocyte source on in vitro development following caprine SCNT


2021 ◽  
pp. 3476-3486
Author(s):  
Alaa. M. Hasan ◽  
Ekhlas. A.J. ElKaaby ◽  
Rakad. M.Kh. AL-Jumaily

    The leading purpose of this work is the development of efficient culture conditions to induce calli from cabbage (Brassica oleracea var. capitata L.) under in vitro conditions. The mature seeds were surface sterilized with combinations of different concentrations of ethanol and NaOCl in different time durations and  were germinated on MS basal medium. The results revealed that the best sterilization method of cabbage seeds was by using 70% ethanol for one minute, followed by 15 min in 2% (NaOCl). Seedlings were used as donor sources for hypocotyls, cotyledon leaves, true leaves, and shoot tip explants. These explants were cultured on different combinations of cytokinins (TDZ, BAP, Ad) and auxins (IAA, NAA, 2, 4-D) then implanted in Murashige and Skoog (MS) media. 4 weeks after culturing, a significant difference was found among the explants in response to plant hormones. The maximum percentage of callus induction (100%) was using the combinations of 1 BAP + 1 2, 4-D, 1 BAP + 1 NAA, and 1 BAP + 2 2,4-D mg. l-1. In addition, explants responses varied and the hypocotyls showed a superior result (85.71 %) as compared to other explants. For callus fresh weight, the combination of 0.22 TDZ + 79.9 Ad mg. l-1    had a significant effect, causing the highest fresh weight (0.2745g), while control treatment gave the lowest mean of 0.0066 g. Data showed that cotyledon explants were significantly superior in giving highest callus fresh weight with the mean of 0.1723 g. On the other hand, hypocotyl explants gave the lowest mean, reaching 0.1542 g.


2018 ◽  
Vol 12 (2) ◽  
pp. 117
Author(s):  
Cecília Moreira Serafim ◽  
Arlene Santisteban Campos ◽  
Priscila Bezerra Dos Santos Melo ◽  
Ana Cecília Ribeiro de Castro ◽  
Ana Cristina Portugal Pinto de Carvalho

Faced with the demand for plants potted for their foliage, Anthurium maricense is seen as a viable option. However, most of the studies on obtaining micropropagated plantlets are for A. andraeanum, with nothing yet reported for A. maricense. The aim of this study therefore, was to evaluate the effect of four cytokinins in different concentrations, on the in vitro induction of shoots from nodal segments of A. maricense. The experimental design was completely randomised in a 4 x 4 factorial scheme, with four cytokinins (BAP, ZEA, CIN and 2iP) and 4 concentrations (0, 2.22, 4.44 and 6.66 μM), for a total of 16 treatments, with 6 replications of five test tubes, and using one nodal segment. Cultures were kept in a growth room at 25 ± 2°C, a photoperiod of 16 h and a light intensity of 30 μmolm-2 s-1 for 60 days. After this period, the number of shoots formed per node was evaluated. The addition of a cytokinin to the culture medium was determinant for the in vitro regeneration of shoots in A. maricense. The greatest estimated number of shoot formations in A. maricense were obtained in the culture media containing ZEA (3.87) and BAP (3.30), both at concentration of 6.66 μM.


2017 ◽  
Vol 29 (1) ◽  
pp. 188
Author(s):  
N. C. Negota ◽  
L. P. Nethenzheni ◽  
M. L. Mphaphathi ◽  
D. M. Barry ◽  
T. L. Nedambale

The in vitro culture media and assisted hatching techniques remain challenging obstacles to be utilised widely. Mechanical, chemical, enzymatic thinning, and laser-assisted techniques have been used previously but information is still lacking on its application in livestock. The aim of this study was to compare the effect of 2 in vitro culture media (Hamster F10 and TMC-199) and 4 (mechanical, chemical, enzymatic, and laser) assisted hatching techniques on blastocyst formation and hatching rate using murine embryos as a model. The C57/b and Balb/c breeds were raised until they reached maturity and bred naturally to produce F1 generation. The light in the breeding house was controlled at 14 h light and 10 h dark. Feed and water were provided ad libitum for the mice. Superovulation of females were stimulated using equine chorionic gonadotropin and human chorionic gonadotropin. The F1 generation was used for the collection of the 400 blastocysts and randomly allocated into 4 assisted hatching techniques. Blastocysts were paired into a group of 10 and replicated 4 times for each assisted hatching technique. The general linear model of SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used to analyse the data. Assisted hatching techniques of laser, mechanical, enzymatic, and chemical yielded 46.9 ± 37.1, 51.1 ± 40.2, 39.1 ± 35.8, and 33.3 ± 4.5%, respectively, under in vitro culture of Hamster F10. The TCM-199, laser, mechanical, enzymatic, and chemical assisted hatching techniques yielded 56.3 ± 43.3, 52.6 ± 35.5, 49.2 ± 37.5, and 33.9 ± 35.5%, respectively, with a significant difference. There was no significant difference observed in assisted hatching techniques and Hamster F10 culture medium. However, the hatching rate of embryos for all techniques was higher when in vitro cultured in TCM than cultured in Hamster F10. Hatching rate of blastocysts increased from chemical, enzymatic, mechanical, and laser with response to Hamster F10 and TCM; thus, laser is a suitable assisted hatching technique with TCM-199.


Zygote ◽  
2020 ◽  
Vol 28 (6) ◽  
pp. 447-452
Author(s):  
Seungbum Hong ◽  
Binoy S. Vettical ◽  
Nisar Ahmad Wani

SummaryExperiments were conducted to study in vitro maturation of prepubertal goat oocytes and their developmental potential after chemical activation. In Experiment 1, cumulus–oocytes complexes collected from the ovaries of prepubertal goats slaughtered at a local abattoir were matured in vitro in TCM-199-based medium supplemented with 10 µg/ml luteinizing hormone (LH) (treatment 1) or 10 µg/ml LH + 0.1 mM l-cysteine (treatment 2). In Experiment 2, mature oocytes were activated with either 5 µM ionomycin or 7% ethanol. After 18 h, some oocytes were randomly fixed and stained to evaluate their chromatin status, while others were cultured in embryo culture medium to study their further development. In Experiment 3, oocytes activated with 5 µM ionomycin were cultured for 7 days in one of the four different culture media [Charles Rosenkrans medium (CR-1), TCM-199, potassium simplex optimization medium (KSOM) and synthetic oviductal fluid (SOF)] to study their developmental potential. The maturation rate in control, treatment 1, and treatment 2 media did not differ from each other (P > 0.05). However, the lowest degeneration of oocytes was observed in treatment 3 (P < 0.05) when compared with the other two groups. The proportion of activated oocytes was higher, while non-activated oocytes were lower in ionomycin group when compared with the group activated with ethanol (P < 0.05). The proportions of oocytes cleaved were 65.7, 56.8, 61.0 and 54.4% in CR-1, TCM-199, KSOM and SOF medium, respectively, with no significant difference. However, further development of cleaved oocytes was better in KSOM followed by SOF.


Sign in / Sign up

Export Citation Format

Share Document