scholarly journals Satellite Data for Agricultural Drought Analysis in Chile

Author(s):  
Francisco Zambrano Bigiarini
2020 ◽  
Vol 4 (1-2) ◽  
pp. 12-18
Author(s):  
Vijendra Boken

Yavatmal is one of the drought prone districts in Maharashtra state of India and has witnessed an agricultural crisis to the extent that hundreds of its farmers have committed suicides in recent years. Satellite data based products have previously been used globally for monitoring and predicting of drought, but not for monitoring their extreme impacts that may include farmer-suicides. In this study, the performance of the Soil Water Index (SWI) derived from the surface soil moisture estimated by the European Space Agency’s Advanced Scatterometer (ASCAT) is assessed. Using the 2007-2015 data, it was found that the relationship of the SWI anomaly was bit stronger (coefficient. of correlation = 0.59) with the meteorological drought or precipitation than with the agricultural drought or crop yields of major crops (coefficient. of correlation = 0.50).  The farmer-suicide rate was better correlated with the SWI anomaly averaged annually than with the SWI anomaly averaged only for the monsoon months (June, July, August, and September). The correlation between the SWI averaged annually increased to 0.89 when the averages were taken for three years, with the highest correlation occurring between the suicide rate and the SWI anomaly averaged for three years. However, a positive relationship between SWI and the suicide rate indicated that drought was not a major factor responsible for suicide occurrence and other possible factors responsible for suicide occurrence need to examine in detail.


2014 ◽  
Vol 14 (9) ◽  
pp. 2435-2448 ◽  
Author(s):  
N. R. Dalezios ◽  
A. Blanta ◽  
N. V. Spyropoulos ◽  
A. M. Tarquis

Abstract. Drought is considered as one of the major natural hazards with a significant impact on agriculture, environment, society and economy. Droughts affect sustainability of agriculture and may result in environmental degradation of a region, which is one of the factors contributing to the vulnerability of agriculture. This paper addresses agrometeorological or agricultural drought within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with risk identification of agricultural drought, which involves drought quantification and monitoring, as well as statistical inference. For the quantitative assessment of agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the vegetation health index (VHI). The computation of VHI is based on satellite data of temperature and the normalized difference vegetation index (NDVI). The spatiotemporal features of drought, which are extracted from VHI, are areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981–2001) time series of the National Oceanic and Atmospheric Administration/advanced very high resolution radiometer (NOAA/AVHRR) satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural drought-prone region of Greece, characterized by vulnerable agriculture. The results show that agricultural drought appears every year during the warm season in the region. The severity of drought is increasing from mild to extreme throughout the warm season, with peaks appearing in the summer. Similarly, the areal extent of drought is also increasing during the warm season, whereas the number of extreme drought pixels is much less than those of mild to moderate drought throughout the warm season. Finally, the areas with diachronic drought persistence can be located. Drought early warning is developed using empirical functional relationships of severity and areal extent. In particular, two second-order polynomials are fitted, one for low and the other for high severity drought classes, respectively. The two fitted curves offer a forecasting tool on a monthly basis from May to October. The results of this drought risk identification effort are considered quite satisfactory offering a prognostic potential. The adopted remote-sensing data and methods have proven very effective in delineating spatial variability and features in drought quantification and monitoring.


2011 ◽  
Vol 184 (12) ◽  
pp. 7153-7163 ◽  
Author(s):  
N. R. Patel ◽  
B. R. Parida ◽  
V. Venus ◽  
S. K. Saha ◽  
V. K. Dadhwal

Author(s):  
Rizatus Shofiyati ◽  
Wataru Takeuchi ◽  
Soni Darmawan ◽  
Parwati Sofan

Long droughts experienced in the past are identified as one of the main factors in the failure of rice production. In this regard, special attention to monitor the condition is encouraged to reduce the damage. Currently, various satellite data and approaches can withdraw valuable information for monitoring and anticipating drought hazards. MODIS, MTSAT, AMSR-E, TRMM and GSMaP have been used in this activity. Meteorological drought index (SPI) of the daily and monthly rainfall data from TRMM and GSMaP have analyzed for last 10-year period. While, agronomic drought index has been studied by observing the character of some indices (EVI, VCI, VHI, LST, and NDVI) of sixteen-day and monthly MODIS, MTSAT, and AMSR-E data at a period of 4 years. Network for satellite data transfer has been built between LAPAN (data provider), ICALRD (implementer), IAARD Cloud Computing, University of Tokyo (technical supporter), and NASA. Two information system have been developed: 1) agricultural drought using the model developed by LAPAN, and 2) meteorological drought developed by Takeuchi (University of Tokyo).The accuracy study using quantitative method for LAPAN model uses VHI is 60% (Kappa 0,44), while that of for University of Tokyo model uses qualitative model with KBDI value 500-600 shows an early indication of  drought for paddy field. This will help the government or field officers in rapid management actions for the indicated drought area.This paper describes the implementation and dissemination of drought impact monitoring model on the area of rice production center using an integrated information system satellite based model. The two developed information systems are effective for spatially dissemination of drought information.


Sign in / Sign up

Export Citation Format

Share Document