scholarly journals Analysing Extreme Risk in the South African Financial Index (J580) using the Generalised Extreme Value Distribution

2020 ◽  
Vol 8 (4) ◽  
pp. 915-933
Author(s):  
Delson Chikobvu ◽  
Owen Jakata

The aim of this study is to model the probabilistic behaviour of unusually large financial losses (extreme-risk)and gains of the South African Financial Index (J580). Risk is defined as uncertainty in return in this paper. This study makes use of Extreme Value Theory (EVT) for the period years: 1995-2018 to build models that are used to estimate extreme losses and gains. The quarterly block maxima/minima of monthly returns are tted to the Generalised Extreme Value Distribution (GEVD). Return levels (maximum loss/gain) based on the parameters from the GEVD are estimated. A comparative analysis with the Generalised Pareto Distribution (GPD) is carried out. The study reveals that EVT provides an efficient method of forecasting potentially high risks in advance. The conclusion is that analysing extreme risk in the South African Financial Index helps investors understand its riskness better and manage to reduce the risk exposure in this portfolio.

1982 ◽  
Vol 14 (04) ◽  
pp. 833-854 ◽  
Author(s):  
Jonathan P. Cohen

Let F be a distribution in the domain of attraction of the type I extreme-value distribution Λ(x). In this paper we derive uniform rates of convergence of Fn to Λfor a large class of distributions F. We also generalise the penultimate approximation of Fisher and Tippett (1928) and show that for many F a type II or type III extreme-value distribution gives a better approximation than the limiting type I distribution.


1982 ◽  
Vol 14 (4) ◽  
pp. 833-854 ◽  
Author(s):  
Jonathan P. Cohen

Let F be a distribution in the domain of attraction of the type I extreme-value distribution Λ(x). In this paper we derive uniform rates of convergence of Fn to Λfor a large class of distributions F. We also generalise the penultimate approximation of Fisher and Tippett (1928) and show that for many F a type II or type III extreme-value distribution gives a better approximation than the limiting type I distribution.


Author(s):  
Arvid Naess ◽  
Oleh Karpa

In the reliability engineering and design of offshore structures, probabilistic approaches are frequently adopted. They require the estimation of extreme quantiles of oceanographic data based on the statistical information. Due to strong correlation between such random variables as, e.g., wave heights and wind speeds (WS), application of the multivariate, or bivariate in the simplest case, extreme value theory is sometimes necessary. The paper focuses on the extension of the average conditional exceedance rate (ACER) method for prediction of extreme value statistics to the case of bivariate time series. Using the ACER method, it is possible to provide an accurate estimate of the extreme value distribution of a univariate time series. This is obtained by introducing a cascade of conditioning approximations to the true extreme value distribution. When it has been ascertained that this cascade has converged, an estimate of the extreme value distribution has been obtained. In this paper, it will be shown how the univariate ACER method can be extended in a natural way to also cover the case of bivariate data. Application of the bivariate ACER method will be demonstrated for measured coupled WS and wave height data.


2021 ◽  
Vol 2 (2) ◽  
pp. 06-15
Author(s):  
Mamadou Cisse ◽  
Aliou Diop ◽  
Souleymane Bognini ◽  
Nonvikan Karl-Augustt ALAHASSA

In extreme values theory, there exist two approaches about data treatment: block maxima and peaks-over-threshold (POT) methods, which take in account data over a fixed value. But, those approaches are limited. We show that if a certain geometry is modeled with stochastic graphs, probabilities computed with Generalized Extreme Value (GEV) Distribution can be deflated. In other words, taking data geometry in account change extremes distribution. Otherwise, it appears that if the density characterizing the states space of data system is uniform, and if the quantile studied is positive, then the Weibull distribution is insensitive to data geometry, when it is an area attraction, and the Fréchet distribution becomes the less inflationary.


2020 ◽  
Author(s):  
Arianna Miniussi ◽  
Marco Marani ◽  
Gabriele Villarini

<p>Tropical Cyclones (TCs) represent a threat in several areas of the world, among which the Eastern/South-Eastern United States are one of the highly impacted regions. In addition to the frequently analyzed hazards related to the strong winds and storm surges associated with TCs, they are also responsible for heavy rainfall, which can affect areas located very far from the storm center. The accurate estimation of rainfall extremes is crucial in several TC-related impacts, such as engineering design of buildings and prevention/protection measures, flood mapping, risk estimation and mitigation, insurance and re-insurance purposes, policy-making support. Statistical approaches considering the physical drivers of hydrological phenomena, besides their conceptual relevance, can help reducing the estimation uncertainty of extremes. Under these premises, here we use the Metastatistical Extreme Value Distribution (MEVD), a recent approach that improves the estimation of high-return period values over the traditional Extreme Value Theory. We leverage the property of the MEVD to explicitly include in the statistical formulation different rainfall-generating phenomena and we examine the potential advantage of distinguishing TC-induced and non-TC rainfall events in the estimation of extremes. Hence, we apply the MEVD both in a single-component formulation (i.e., assuming that all rainfall events are generated by one single mechanism, so that they can be described by the same probability distribution) and a mixed-population formulation (i.e., separating non-TC and TC-induced rainfall events) to long time series of daily precipitation in six American metropolitan areas, historically known for being impacted by TCs. Moreover, due to the characteristic time scale of these mechanisms, which can significantly influence precipitation for several days, we focus also on aggregated values of rainfall on consecutive days. We find that the mixed approach is advantageous in some cases when looking at daily rainfall, especially when there is a rather uniform frequency of TC events over years. When considering cumulative rainfall on time windows of three days, we show that the reduction of the estimation error by the mixed MEVD is generally higher than in the case of daily rainfall and it is consistent for all the cases studied, except for Houston. A possible reason for the mixed MEVD not to outperform the single-component MEVD in this area is the presence of tornadic supercell convective mechanisms, which also generate heavy rainfall though concentrated in short time intervals.</p>


1982 ◽  
Vol 14 (03) ◽  
pp. 600-622 ◽  
Author(s):  
Richard L. Smith

Rates of convergence are derived for the convergence in distribution of renormalised sample maxima to the appropriate extreme-value distribution. Related questions which are discussed include the estimation of the principal error term and the optimality of the renormalising constants. Throughout the paper a close parallel is drawn with the theory of slow variation with remainder. This theory is used in proving most of the results. Some applications are discussed, including some models of importance in reliability.


Sign in / Sign up

Export Citation Format

Share Document