scholarly journals 3-ARYLIDENE-2-OXINDOLES AS QUINONE REDUCTASE II INHIBITORS

Author(s):  
E. Bezsonova ◽  
◽  
M. Dubar ◽  
D. Melekhina ◽  
К. Evdokimov ◽  
...  
Keyword(s):  
Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
R Ho ◽  
O Ciclet ◽  
A Ben Zaied ◽  
P Raharivelomanana ◽  
M Cuendet

2005 ◽  
Vol 10 (4) ◽  
pp. 340-343 ◽  
Author(s):  
Ju-Ryoung Kim ◽  
Jung-Hyun Kim ◽  
Hyun-Ae Lim ◽  
Chan-Ho Jang ◽  
Jang-Hoon Kim ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 229
Author(s):  
Young Eun Du ◽  
Eun Seo Bae ◽  
Yeonjung Lim ◽  
Jang-Cheon Cho ◽  
Sang-Jip Nam ◽  
...  

Two new secondary metabolites, svalbamides A (1) and B (2), were isolated from a culture extract of Paenibacillus sp. SVB7 that was isolated from surface sediment from a core (HH17-1085) taken in the Svalbard archipelago in the Arctic Ocean. The combinational analysis of HR-MS and NMR spectroscopic data revealed the structures of 1 and 2 as being lipopeptides bearing 3-amino-2-pyrrolidinone, d-valine, and 3-hydroxy-8-methyldecanoic acid. The absolute configurations of the amino acid residues in svalbamides A and B were determined using the advanced Marfey’s method, in which the hydrolysates of 1 and 2 were derivatized with l- and d- forms of 1-fluoro-2,4-dinitrophenyl-5-alanine amide (FDAA). The absolute configurations of 1 and 2 were completely assigned by deducing the stereochemistry of 3-hydroxy-8-methyldecanoic acid based on DP4 calculations. Svalbamides A and B induced quinone reductase activity in Hepa1c1c7 murine hepatoma cells, indicating that they represent chemotypes with a potential for functioning as chemopreventive agents.


1999 ◽  
Vol 18 (5) ◽  
pp. 327-335
Author(s):  
Davis H. Daiker ◽  
Jonathan B. Ward ◽  
Heidi A. Schoenfeld ◽  
Gisela Witz ◽  
Mary Treinen Moslen

Although the CD-1 mouse strain has been used to investigate the toxicity of numerous substrates of Cyp2e1, limited information is available about responses of this strain to ethanol, a potent and clinically relevant inducer of this cytochrome P450 isozyme. Our goal was to characterize a dietary ethanol protocol for greater than threefold induction of hepatic Cyp2e1 in CD-1 mice without confounding alterations to other biotransformation enzymes or injury to known target tissues. Female CD-1 mice were fed the Lieber-DeCarli liquid diet containing 1.4 to 6.4% ethanol (v/v) for time periods of 1 to 12 weeks. A series of range-finding experiments indicated that the stock 6.4% ethanol diet caused rapid weight loss, whereas dietary ethanol concentrations less than or equal to 3.2% produced inadequate (i.e., less than threefold) induction of hepatic Cyp2e1. Suitable responses were observed in mice fed a 4.1% ethanol diet, namely, body weight gain equivalent to both pair-fed or rodent chow control groups plus consistent and stable induction of hepatic Cyp2e1 activities by greater than threefold without evidence of hepatic lipid peroxidation or histopathology. Evaluations of other representative biotransformation activities, including bone marrow quinone reductase and hepatic aldehyde dehydrogenase, showed no alterations with the 4.1% ethanol diet, except for a modest 20% decline in hepatic glutathione peroxidase. Unlike observations in other species, Cyp2e1 induction was not evident in bone marrow or spleen by Western blot. Mice given the 4.1% ethanol diet for 6 and/or 12 weeks showed no changes in cellularity of the spleen or bone marrow, frequency of hprt mutations in splenic lymphocytes, or percentage of DNA-protein crosslinks in bone marrow cells. These parameters were monitored because ethanol at high exposures is known to cause immunosuppression and mild genotoxicity. Female CD-1 mice fed a 4.1% ethanol liquid diet showed substantial (greater than threefold) induction of hepatic Cyp2e1 without confounding detrimental effects on the fiver, spleen, or bone marrow. Thus, this dietary ethanol protocol should be useful for future investigations of the role of Cyp2e1 induction on genotoxicity responses to Cyp2e1 substrates.


Sign in / Sign up

Export Citation Format

Share Document