scholarly journals Svalbamides A and B, Pyrrolidinone-Bearing Lipodipeptides from Arctic Paenibacillus sp.

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 229
Author(s):  
Young Eun Du ◽  
Eun Seo Bae ◽  
Yeonjung Lim ◽  
Jang-Cheon Cho ◽  
Sang-Jip Nam ◽  
...  

Two new secondary metabolites, svalbamides A (1) and B (2), were isolated from a culture extract of Paenibacillus sp. SVB7 that was isolated from surface sediment from a core (HH17-1085) taken in the Svalbard archipelago in the Arctic Ocean. The combinational analysis of HR-MS and NMR spectroscopic data revealed the structures of 1 and 2 as being lipopeptides bearing 3-amino-2-pyrrolidinone, d-valine, and 3-hydroxy-8-methyldecanoic acid. The absolute configurations of the amino acid residues in svalbamides A and B were determined using the advanced Marfey’s method, in which the hydrolysates of 1 and 2 were derivatized with l- and d- forms of 1-fluoro-2,4-dinitrophenyl-5-alanine amide (FDAA). The absolute configurations of 1 and 2 were completely assigned by deducing the stereochemistry of 3-hydroxy-8-methyldecanoic acid based on DP4 calculations. Svalbamides A and B induced quinone reductase activity in Hepa1c1c7 murine hepatoma cells, indicating that they represent chemotypes with a potential for functioning as chemopreventive agents.

Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


Zootaxa ◽  
2016 ◽  
Vol 4196 (4) ◽  
pp. 498 ◽  
Author(s):  
KRZYSZTOF ZAWIERUCHA ◽  
MAŁGORZATA KOLICKA ◽  
ŁUKASZ KACZMAREK

Tardigrada is phylum of micrometazoans widely distributed throughout the world, because of old descriptions and insufficient morphometric data, many species currently need revision and re-description. Tenuibiotus voronkovi (Tumanov, 2007) is tardigrade previously only recorded from the Svalbard archipelago. This species’ original description was based on two individuals with destroyed claws on the fourth pair of legs and a lack of complete morphometric data for buccal tube and claws. In this paper, we present a re-description of T. voronkovi, supplementing the original description using the original paratype and additional material from Svalbard: Spitsbergen, Nordaustlandet and Edgeøya. This species is characterised by two macroplacoids and a microplacoid, claws of Tenuibiotus type, dentate lunules under claw IV, and faint granulation on legs I–III and strong granulation on the legs IV. We include a new morphological description with microphotographs, morphometric, and molecular data (including: mitochondrial cytochrome c oxidase subunit I (COI), internal transcribed spacers (ITS1–5.8S rDNA–ITS2), and nuclear ribosome subunits 28S rRNA and 18S rRNA). These are the first published molecular data for the genus Tenuibiotus Pilato and Lisi, 2011, analysis of which indicated an affiliation of Tenuibiotus to the family Macrobiotidae. We found no differences in body size between individuals from different islands (Nordaustlandet and Edgeøya), but did observe variability in the eggs. After revision of the literature and the published figures, we concluded that Dastych’s (1985) report of T. willardi (Pilato, 1976) from Svalbard, was actually T. voronkovi, which has the greater distribution in Svalbard, and other Arctic locations, than previously believed. 


2021 ◽  
Author(s):  
Elianne Egge ◽  
Stephanie Elferink ◽  
Daniel Vaulot ◽  
Uwe John ◽  
Gunnar Bratbak ◽  
...  

AbstractArctic marine protist communities have been understudied due to challenging sampling conditions, in particular during winter and in deep waters. The aim of this study was to improve our knowledge on Arctic protist diversity through the year, both in the epipelagic (< 200 m depth) and mesopelagic zones (200-1000 m depth). Sampling campaigns were performed in 2014, during five different months, to capture the various phases of the Arctic primary production: January (winter), March (pre-bloom), May (spring bloom), August (post-bloom) and November (early winter). The cruises were undertaken west and north of the Svalbard archipelago, where warmer Atlantic waters from the West Spitsbergen Current meets cold Arctic waters from the Arctic Ocean. From each cruise, station, and depth, 50 L of sea water were collected and the plankton was size-fractionated by serial filtration into four size fractions between 0.45-200 µm, representing the picoplankton, nanoplankton and microplankton. In addition vertical net hauls were taken from 50 m depth to the surface at selected stations. From the plankton samples DNA was extracted, the V4 region of the 18S rRNA-gene was amplified by PCR with universal eukaryote primers and the amplicons were sequenced by Illumina high-throughput sequencing. Sequences were clustered into Amplicon Sequence Variants (ASVs), representing protist genotypes, with the dada2 pipeline. Taxonomic classification was made against the curated Protist Ribosomal Reference database (PR2). Altogether 6,536 protist ASVs were obtained (including 54 fungal ASVs). Both ASV richness and taxonomic composition were strongly dependent on size-fraction, season, and depth. ASV richness was generally higher in the smaller fractions, and higher in winter and the mesopelagic samples than in samples from the well-lit epipelagic zone during summer. During spring and summer, the phytoplankton groups diatoms, chlorophytes and haptophytes dominated in the epipelagic zone. Parasitic and heterotrophic groups such as Syndiniales and certain dinoflagel-lates dominated in the mesopelagic zone all year, as well as in the epipelagic zone during the winter. The dataset is available at https://doi.org/10.17882/79823, (Egge et al., 2014).


2016 ◽  
Vol 56 (4) ◽  
pp. 493-501
Author(s):  
A. Yu. Mikhailov ◽  
A. N. Zolotokrylin ◽  
T. B. Titkova

Winter positions of the Arctic front (AF) during the known periods of the climate cooling (1949–1980) and warming (1981–2012) were analyzed within the sector 10° W – 60° E. The AF positios were determined by the following indicators: 1) a surface pressure; 2) horizontal wind divergence; 3) geostrophic vortex; 4) geostrophic heat advection. The main extrema of these four dynamic characteristics coincide and fall on the latitude 72.5° N. This corresponds to the average position of the AF for a given resolution and confirms correctness of our choice of these characteristics as the AF indicators. Relative differences between mean profiles of all values of the above warm and cold periods were calculated using method of normalization of each value for the corresponding latitude by the standard deviation for the entire period (1949–2012). To study variability of the AF position we used mean yearly winter profiles of the variables under investigation together with the statistical analysis of positions of the extrema within the latitude degrees. For pressure and geostrophic advection positions of the absolute minima were determined while for geostrophic vortex and divergence – positions of the absolute maxima. The data show that according to different criteria the AF average positions for the period 1949–2012 lie within the zone 72.4–73.4 N. The interannual variability of the AF positions lies within the 1–2 degrees of latitude and corresponds to the range of the air temperature variability above the zone of maximal changes in the sea ice area. According to the standard deviation values of the divergence and the geostrophic vortex are the most stable in region of the AF passage. Comparison of differences of the studied characteristics between the warm and cold periods shows that the changes in the AF positions are not statistically significant (P(t) < 91% t‑criterion) unlike the changes in positions of isolines which characterize the warming (P(t) = 100%). Thus, despite significant changes in properties of the surface and the temperature regime to the north of 72.5 N (the warming), according to all the criteria the AF climatic position remains quasi‑stationary for 32‑year periods of averaging.


2021 ◽  
pp. 137-142
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘Arctic futures’ discusses the future of the Arctic that starts in the Norwegian territory of Svalbard wherein the Global Seed Vault functions as an Arctic sanctuary for the genetic diversity of crops. The Svalbard archipelago is a hotspot of Arctic amplification as rapid warming has been keenly felt by the small community. However, the environmental changes, no matter how stark and widespread, will not dampen interest in economic development and strategic posturing. Arctic states and northern peoples remain eager to improve their social and economic conditions as well as adapt to ongoing climate change. The Arctic is a haven of international peace and cooperation as the Arctic Council is cited as a governance model that others could emulate.


2019 ◽  
Vol 166 (12) ◽  
Author(s):  
Michał Grabowski ◽  
Aleksandra Jabłońska ◽  
Agata Weydmann-Zwolicka ◽  
Mikhail Gantsevich ◽  
Petr Strelkov ◽  
...  

Abstract The distribution of two common intertidal amphipod species Gammarus oceanicus and Gammarus setosus was studied along the coast of Svalbard Archipelago. Genetic analysis showed geographical homogeneity of G. oceanicus with only one molecular operational taxonomic unit (MOTU) and much higher diversification of G. setosus (5 MOTUs) in the studied area. Only two MOTUs of G. setosus are widespread along the whole studied Svalbard coastline, whereas the remaining three MOTUs are present mainly along the northern and eastern parts of archipelago’s largest island, Spitsbergen. Distribution analysis indicates that the demographic and spatial expansion of G. oceanicus in the northern Atlantic has started already during the Last Glacial Maximum (LGM, ca. 18 ka), while G. setosus seems to be a long-persistent inhabitant of the Arctic, possibly even through the LGM, with slower distribution dynamics. Combining the results of our molecular study with previous field observations and the knowledge upon the direction of ocean currents around the Svalbard Archipelago, it can be assumed that G. oceanicus is a typical boreal Atlantic species that is still continuing its postglacial expansion northwards. In recent decades it colonized High Arctic due to the climate warming and has partly displaced G. setosus, that used to be the only common gammarid of the Svalbard intertidal zone.


2015 ◽  
Vol 73 (1) ◽  
pp. 251-262 ◽  
Author(s):  
Liqi Chen ◽  
Wei Li ◽  
Jianqiong Zhan ◽  
Jianjun Wang ◽  
Yuanhui Zhang ◽  
...  

Abstract To investigate the concentrations, sources, and temporal variations of atmospheric black carbon (BC) in the summer Arctic, routine ground-level observations of BC by optical absorption were made in the summer from 2005 to 2008 at the Chinese Arctic “Yellow River” Station (78°55′N, 11°56′E) at Ny-Ålesund on the island of Spitsbergen in the Svalbard Archipelago. Methods of the ensemble empirical-mode decomposition analysis and back-trajectory analysis were employed to assess temporal variation embedded in the BC datasets and airmass transport patterns. The 10th-percentile and median values of BC concentrations were 7.2 and 14.6 ng m−3, respectively, and hourly average BC concentrations ranged from 2.5 to 54.6 ng m−3. A gradual increase was found by 4 ng m−3 a−1. This increase was not seen in the Zeppelin Station and it seemed to contrast with the prevalent conception of generally decreasing BC concentration since 1989 in the Arctic. Factors responsible for this increase such as changes in emissions and atmospheric transport were taken into consideration. The result indicated that BC from local emissions was mostly responsible for the observed increase from 2005 to 2008. BC temporal variation in the summer was controlled by the atmospheric circulation, which presented a significant 6–14-day variation and coherent with 1–3- and 2–5-day and longer cycle variation. Although the atmospheric circulation changes from 2005 to 2008, there was not a marked trend in long-range transportation of BC. This study suggested that local emissions might have significant implication for the regional radiative energy balance at Ny-Ålesund.


Biochemistry ◽  
1997 ◽  
Vol 36 (51) ◽  
pp. 16221-16230 ◽  
Author(s):  
Gabriella Tedeschi ◽  
Lucia Zetta ◽  
Armando Negri ◽  
Michele Mortarino ◽  
Fabrizio Ceciliani ◽  
...  

2016 ◽  
Vol 30 (4) ◽  
pp. 398 ◽  
Author(s):  
Małgorzata Kolicka ◽  
Miroslawa Dabert ◽  
Jacek Dabert ◽  
Tobias Kånneby ◽  
Jacek Kisielewski

Gastrotricha is a cosmopolitan phylum of aquatic and semi-terrestrial invertebrates that comprises ~820 described species. To date, freshwater gastrotrichs have not been the subject of faunistic or taxonomic research in the polar regions. In this paper, we present the first species-level description of a freshwater gastrotrich from the Arctic (Svalbard Archipelago). Evidence from morphology, morphometry and molecular analyses reveals that the species represents a new genus in Chaetonotidae: Bifidochaetus arcticus, gen. et sp. nov. Taking into consideration many morphological similarities to Chaetonotus (Primochaetus) veronicae Kånneby, 2013 we propose to include C. (P.) veronicae in the newly established genus under the new combination Bifidochaetus veronicae (Kånneby, 2013), comb. nov. In the phylogenetic analysis based on nuclear 18S rRNA, 28S rRNA and mitochondrial cytochrome c oxidase subunit I sequence data, B. arcticus, gen. et sp. nov. is nested within the family Chaetonotidae, as the sister group to the genus Lepidochaetus Kisielewski, 1991. In this paper we also present new taxonomic characters useful for gastrotrich taxonomy: the pharynx-to-intestine length ratio (I) and the spine bifurcation ratio (B).


2007 ◽  
Vol 52 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Jun Matsumoto ◽  
Kimitoshi Sakamoto ◽  
Noriko Shinjyo ◽  
Yasutoshi Kido ◽  
Nao Yamamoto ◽  
...  

ABSTRACT Alveolar echinococcosis, which is due to the massive growth of larval Echinococcus multilocularis, is a life-threatening parasitic zoonosis distributed widely across the northern hemisphere. Commercially available chemotherapeutic compounds have parasitostatic but not parasitocidal effects. Parasitic organisms use various energy metabolic pathways that differ greatly from those of their hosts and therefore could be promising targets for chemotherapy. The aim of this study was to characterize the mitochondrial respiratory chain of E. multilocularis, with the eventual goal of developing novel antiechinococcal compounds. Enzymatic analyses using enriched mitochondrial fractions from E. multilocularis protoscoleces revealed that the mitochondria exhibited NADH-fumarate reductase activity as the predominant enzyme activity, suggesting that the mitochondrial respiratory system of the parasite is highly adapted to anaerobic environments. High-performance liquid chromatography-mass spectrometry revealed that the primary quinone of the parasite mitochondria was rhodoquinone-10, which is commonly used as an electron mediator in anaerobic respiration by the NADH-fumarate reductase system of other eukaryotes. This also suggests that the mitochondria of E. multilocularis protoscoleces possess an anaerobic respiratory chain in which complex II of the parasite functions as a rhodoquinol-fumarate reductase. Furthermore, in vitro treatment assays using respiratory chain inhibitors against the NADH-quinone reductase activity of mitochondrial complex I demonstrated that they had a potent ability to kill protoscoleces. These results suggest that the mitochondrial respiratory chain of the parasite is a promising target for chemotherapy of alveolar echinococcosis.


Sign in / Sign up

Export Citation Format

Share Document