scholarly journals Experimental and theoretical (DFT) studies on poly[octa-μ3-acesulfamato-O,O:N,Oʹ;Oʹ,N:O,O-tetraaquatetrabarium(II)] and poly[octa-μ3-acesulfamato-O,O:N,Oʹ;Oʹ,N:O,O-tetraaquatetrastrontium(II)] complexes

2015 ◽  
Vol 34 (1) ◽  
pp. 105 ◽  
Author(s):  
Hasan İçbudak ◽  
Güneş Demirtaş ◽  
Necmi Dege

<p>Two new one-dimensional coordination polymers of barium (II) and strontium (II)-acesulfamato complexes such as [Ba(C<sub>4</sub>H<sub>4</sub>NO<sub>4</sub>S)<sub>2</sub>(H<sub>2</sub>O)]<em><sub>n</sub></em> (1) and [Sr(C<sub>4</sub>H<sub>4</sub>NO<sub>4</sub>S)<sub>2</sub>(H<sub>2</sub>O)]<em><sub>n</sub></em> (2) have been synthesized and their molecular structures were identified by X-ray diffraction technique. Both barium (II) and strontium (II) complexes crystallize in the centrosymmetric monoclinic space group P12<sub>1</sub>/c1 and barium (II) and strontium (II) ions, which are surrounded by O- and N-atoms, have the coordination number of nine. Each complex forms a structure like a polymer extending parallel to the <em>a</em>-axis. The molecular structures of those complexes were stabilized by O―H···O and C―H···O hydrogen bonds.</p>Besides identifying their crystallographic structures, the geometric parameters were also calculated using density functional theory (B3LYP) with 6-31G base sets for the asymmetric units of the complexes. The calculated geometrical parameters were also compared to the geometric parameters of X-ray diffraction technique. Furthermore, molecular electrostatic potential maps were constructed and frontier molecular orbital calculations were done for the synthesized complexes. The results of the experimental and theoretical IR studies were also compared.

2021 ◽  
Vol 12 (4) ◽  
pp. 459-468
Author(s):  
Shilpa Mallappa Somagond ◽  
Ahmedraza Mavazzan ◽  
Suresh Fakkirappa Madar ◽  
Madivalagouda Sannaikar ◽  
Shankar Madan Kumar ◽  
...  

This study is composed of X-ray diffraction and Density Functional Theory (DFT) based molecular structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2PPT). Crystal data for C11H9N3O: Monoclinic, space group P21/c (no. 14), a = 7.8975(2) Å, b = 11.6546(4) Å, c = 11.0648(3) Å, β = 105.212(2)°, V = 982.74(5) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.346 g/cm3, 13460 reflections measured (5.174° ≤ 2Θ ≤ 64.72°), 3477 unique (Rint = 0.0314, Rsigma = 0.0298) which were used in all calculations. The final R1 was 0.0470 (I > 2σ(I)) and wR2 was 0.1368 (all data). The experimentally determined data was supported by theoretically optimized calculations processed with the help of Hartree-Fock (HF) technique and Density Functional Theory with the 6-311G(d,p) basis set in the ground state. Geometrical parameters (Bond lengths and angles) as well as spectroscopic (FT-IR, 1H NMR, and 13C NMR) properties of 2PPT molecule has been optimized theoretically and compared with the experimentally obtained results. Hirshfeld surface analysis with 2D fingerprinting plots was used to figure out the possible and most significant intermolecular interactions. The electronic characterizations such as molecular electrostatic potential map (MEP) and Frontier molecular orbital (FMO) energies have been studied by DFT/B3LYP approach. The MEP imparted the detailed information regarding electronegative and electropositive regions across the molecule. The HOMO-LUMO energy gap as high as 5.3601 eV was found to be responsible for the high kinetic stability of the 2PPT.


Author(s):  
Qingmei Wu ◽  
Wenjun Ye ◽  
Qian Guo ◽  
Tianhui Liao ◽  
Weike Liao ◽  
...  

In current work, we have firstly synthesized 4-(2-chlorobenzyl)-1-(4-hydroxy-3- ((4-hydroxypiperidin-1-yl)methyl)-5-methoxyphenyl)-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (1) by ring-opening, cyclization, substitution, doamine condensation and Mannich reactions. The structural properties of the title compound 1 were explored using spectroscopy (1H NMR, 13C NMR, MS and FT-IR) and X-ray crystallography method. The single-crystal structure confirmed by X-ray diffraction was consistent with the molecular structure optimized by density functional theory (DFT) calculation at B3LYP/6-311G (2d, p) level of theory. The geometrical parameters, molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analysis were performed by DFT using the B3LYP/6-311G (2d, p) method. Molecular docking has shown favorable interaction between the title compound 1 and SHP2 protein. The inhibitory activity of target compound 1 on SHP2 protein at 10 μM is better than the reference compound (SHP244).


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


2018 ◽  
Vol 34 (1) ◽  
pp. 74-75
Author(s):  
J. A. Kaduk ◽  
K. Zhong ◽  
T. N. Blanton ◽  
S. Gates-Rector ◽  
T. G. Fawcett

Bendamustine hydrochloride monohydrate (marketed as Treanda®) is a nitrogen mustard purine analog alkylator used in the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphomas. Commercial bendamustine hydrochloride monohydrate crystallizes in the monoclinic space group P21/c (14), with a = 4.71348(4) Å, b = 47.5325(3) Å, c = 8.97458 (5) Å, β = 96.6515(8)°, V = 1997.161(23) Å3, and Z = 4. A reduced cell search in the Cambridge Structural Database yielded a previously reported crystal structure (Allen, 2002), which did not include hydrogens (Reck, 2006). In this work, the sample was ordered from Santa Cruz Biotechnology, and analyzed as received. The room-temperature crystal structure was refined using synchrotron (λ = 0.413896 Å) powder diffraction data, density functional theory (DFT), and Rietveld refinement techniques. Hydrogen positions were included as part of the structure, and recalculated during the refinement. The diffraction data were collected on beamline BM-11 at the Advanced Photon Source, Argonne National Laboratory. Figure 1 shows the powder X-ray diffraction pattern of the compound. The pattern is included in the Powder Diffraction File as entry 00-064-1508.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fatih Şen ◽  
Ramazan Şahin ◽  
Muharrem Dinçer ◽  
Ömer Andaç ◽  
Murat Taş

The paper presents a combined experimental and computational study of hexa(1-vinylimidazole)Ni(II) perchlorate complex. The complex was prepared in the laboratory and crystallized in the monoclinic space group P21/n with a=8.442(5), b=13.686(8), c=16.041(9) Å, α=γ=90, β=96.638(5), and Z=1. The complex has been characterized structurally (by single-crystal X-Ray diffraction) and its molecular structure in the ground state has been calculated using the density functional theory (DFT) methods with 6-31G(d) and LanL2DZ basis sets. Thermal behaviour and stability of the complex were studied by TGA/DTA analyses. Besides, the nonlinear optical effects (NLO), molecular electrostatic potential (MEP), frontier molecular orbitals (FMO), and the Mulliken charge distribution were investigated theoretically.


1975 ◽  
Vol 53 (18) ◽  
pp. 2707-2713 ◽  
Author(s):  
Debbie Allen ◽  
Colin James Lyne Lock ◽  
Graham Turner ◽  
John Powell

The crystal and molecular structures of pentane-2,4-dionato-(2,3,5,6-tetrahapto-2,3-dicarbomethoxo[2.2.1]bicycloheptadienerhodium(I), Rh(C5H7O2)(C7H6(CO2CH3)2), have been measured by single crystal X-ray diffraction. The orange crystals are monoclinic, space group P21/c, Z = 4, a = 9.245(4), b = 9.003(4), c = 21.680(15) Å, β = 113.41(5)°. The calculated and observed densities are 1.645 and 1.642(5) respectively. Intensity data were collected on a Syntex [Formula: see text] diffractometer and a full matrix least squares refinement on 3010 observed reflections leads to a conventional R = 0.0660. The structure can be considered as a roughly square planar arrangement of ligands around the rhodium atom composed of two β-ketoenolate oxygen atoms (Rh—O, 2.037(5) and 2.025(5) Å ) and the centers of the two ethylenic groups. The Rh—C distances for the olefin group attached to the two carbomethoxo groups, 2.117(8), 2.108(8) Å, appear to be slightly larger than those for the other olefinic group, 2.087(7), 2.082(6), and the corresponding C=C distances of 1.375(10) and 1.410(9) Å are different at the 95% confidence level.


2015 ◽  
Vol 11 ◽  
pp. 2179-2188 ◽  
Author(s):  
Yury A Sayapin ◽  
Inna O Tupaeva ◽  
Alexandra A Kolodina ◽  
Eugeny A Gusakov ◽  
Vitaly N Komissarov ◽  
...  

A series of derivatives of 2-hetaryl-1,3-tropolone (β-tropolone) was prepared by the acid-catalyzed reaction of 2-methylbenzoxazoles, 2-methylbenzothiazoles and 2,3,3-trimethylindoline with 3,4,5,6-tetrachloro-1,2-benzoquinone. The molecular structures of the three representative compounds were determined by X-ray crystallography. In crystal and (as shown by the DFT PBE0/6-311+G** calculations) in solution, 2-hetaryl-4,5,6,7-tetrachloro- and 2-hetaryl-5,6,7-trichloro-1,3-tropolones exist in the NH-tautomeric form with a strong resonance-assisted intramolecular N–H···O hydrogen bond. The mechanism of the formation of 1,3-tropolones in the reaction of methylene-active five-membered heterocycles with o-chloranil in acetic acid solution has been studied using density functional theory (DFT) methods. The reaction of 2-(2-benzoxa(thia)zolyl)-5,6,7-trichloro(4,5,6,7-tetrachloro)-1,3-tropolones with alcohols leads to the contraction of the seven-membered tropone ring with the formation of 2-(2-benzoxa(thia)zolyl)-6-alkoxycarbonylphenols. The molecular structure of 2-(2-ethoxycarbonyl-6-hydroxy-3,4,5-trichlorophenyl)benzoxazole has been determined by X-ray diffraction. 2-(2-Benzoxa(thia)zolyl)-6-alkoxycarbonylphenols display intense green fluorescence with anomalous Stokes shifts caused by the excited state intramolecular proton transfer (ESIPT) effects.


1991 ◽  
Vol 69 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Jing-Long Du ◽  
Steven J. Rettig ◽  
Robert C. Thompson ◽  
James Trotter

The synthesis of the β and γ forms of M(Ph2PO2)2 where M = Co and Mn are described and the compounds are characterized by infrared spectroscopy, differential scanning calorimetry, X-ray powder diffraction, and low-temperature (2–80 K) magnetic susceptibility studies. Single crystal X-ray diffraction studies are reported on the γ forms. Crystals of the γ forms of poly-bis(μ-diphenylphosphinato)cobalt(II) and poly-bis(μ-diphenylphosphinato)manganese(II) are isomorphous, crystallizing with 4 formula units per unit-cell in the monoclinic space group P21/c. Lattice constants are a = 8.080(2), 8.161(1), b = 23.550(6), 23.751(1), c = 11.726(3), 11.6946(6) Ǻ, and β = 92.88(2), 93.026(8)° for the Co and Mn derivatives respectively. The structures were solved by heavy atom methods and were refined by full-matrix least-squares procedures to R = 0.039 and 0.045 for 4041 and 2878 reflections with I ≥ 3σ(I), respectively. Both crystal structures consist of double phosphinate-bridged chain polymers containing tetrahedrally coordinated metal atoms: Co—O = 1.950(2)–1.963(2) Ǻ, O—Co—O = 104.81(8)–117.77(9)°, Mn—O = 2.016(3)–2.033(3) Ǻ, O—Mn—O = 103.2(1)–114.7(1)°. All four compounds exhibit antiferromagnetic coupling and magnetic susceptibilities have been analyzed according to two Heisenberg models for linear chains of metal ions with S = 3/2 for cobalt and S = 5/2 for manganese. The Weng model (with values for the Wagner and Friedberg model in parentheses) gives –J = 0.25 (0.26) cm−1 and 0.55 (0.60) cm−1 for the β and γ forms, respectively, of Co(Ph2PO2)2, and 0.34 (0.36) cm−1 and 0.17 (0.17) cm−1 for the β and γ forms, respectively, of Mn(Ph2PO2)2. Key words: crystal structure, diphenylphosphinates of cobalt(II) and manganese(II), magnetic properties.


2015 ◽  
Vol 68 (1) ◽  
pp. 127 ◽  
Author(s):  
Kishor Naktode ◽  
Sayak Das Gupta ◽  
Abhinanda Kundu ◽  
Salil K. Jana ◽  
Hari Pada Nayek ◽  
...  

1,3-Di-tert-butyl-imidazolin-2-ylidine-1,1-diphenylphosphinamine (2) was prepared from 1,3-di-tert-butyl-imidazolin-2-imine (1) and chlorodiphenylphosphine. Compound 2 was treated further with elemental sulfur, selenium, and tellurium to afford the corresponding chalcogenide derivatives, 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinothioicamide (4), 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinoselenoicamide (5), and 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinotelluroicamide (6) in good yield. 1,3-Di-tert-butyl-imidazolin-2-ylidine-P,P-diphenylphosphinicamide (3) was obtained by dissolving compound 2 in hydrochloric acid solution in THF. The corresponding borane adduct, 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinaminoborane (7) was isolated by the reaction of compound 2 and sodium borohydride in good yield. The molecular structures of compounds 2 and 4–7 were established by X-ray diffraction analyses. To analyse the electronic structure of chalcogenides of imidazolin-2-imine ligands, the protonation energies of the oxygen, sulfur, and selenide derivative of ligand 2 were calculated by means of density functional theory. Finally, the charge distribution in compounds 3, 4, and 5 were determined using natural bond orbital analysis.


Sign in / Sign up

Export Citation Format

Share Document