Numerical Simulation for Flow Field Characteristics of Swirling Flow with and without Combustion

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 918 ◽  
Author(s):  
Shijie Wu ◽  
Matteo Rubinato ◽  
Qinqin Gui

At the present time, one of the most relevant challenges in marine and ocean engineering and practice is the development of a mathematical modeling that can accurately replicate the interaction of water waves with porous coastal structures. Over the last 60 years, multiple techniques and solutions have been identified, from linearized solutions based on wave theories and constant friction coefficients to very sophisticated Eulerian or Lagrangian solvers of the Navier-Stokes (NS) equations. In order to explore the flow field interior and exterior of the porous media under different working conditions, the Smooth Particle Hydrodynamics (SPH) numerical simulation method was used to simulate the flow distribution inside and outside a porous media applied to interact with the wave propagation. The flow behavior is described avoiding Euler’s description of the interface problem between the Euler mesh and the material selected. Considering the velocity boundary conditions and the cyclical circulation boundary conditions at the junction of the porous media and the water flow, the SPH numerical simulation is used to analyze the flow field characteristics, as well as the longitudinal and vertical velocity distribution of the back vortex flow field and the law of eddy current motion. This study provides innovative insights on the mathematical modelling of the interaction between porous structures and flow propagation. Furthermore, there is a good agreement (within 10%) between the numerical results and the experimental ones collected for scenarios with porosity of 0.349 and 0.475, demonstrating that SPH can simulate the flow patterns of the porous media, the flow through the inner and outer areas of the porous media, and the flow field of the back vortex region. Results obtained and the new mathematical approach used can help to effectively simulate with high-precision the changes along the water depth, for a better design of marine and ocean engineering solutions adopted to protect coastal areas.


2013 ◽  
Vol 341-342 ◽  
pp. 333-336
Author(s):  
Ming Zhen Hu ◽  
Bo Zeng Wu ◽  
Jin Quan Chen ◽  
Ji Shu Zeng

For flotation characteristics of complex sulfide mineral of low-tin in Guangxi Dachang mine, fluid dynamics software FLUENT was applied to simulate the turbulence intensity of slurry fluid in flotation machine at different inflation pressures. The effect of flow field characteristics was gotten for flotation machine. Simulation results show that the best inflation pressure was 120000 Pa.


Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Tao Sun

Axial flow cyclone separator with guide blade has been widely used, due to its low resistance, huge gas processing and small volume. Although its structure is simple, three-dimension strong rotating turbulent flow forms which involves many complex interactions such as dual-phase separation, adsorption and electrostatic interference. This paper is focused on studying the resistance performance of the axial flow cyclone separator. Numerical simulation methods are carried out to acquire the internal flow field characteristics under different operating pressure and temperature conditions. The result shows that the pressure drop decreases under the same operating pressure, as the operating temperature increases. When the operating temperature is the same, the higher operating pressure enhances the value of the pressure drop. Velocity distribution, pressure contours and turbulent viscosity contours have been presented, to analyze the characteristics of the internal airflow, so as to help optimize the design. Experiments are intended to verify the results of numerical simulation and explore the internal flow field of the cyclone separator further. The cyclone separator has 8 rotary blades which are split into 8 parts, namely one blade is 45° in the tangential direction. 0° and 22.5° are chosen in the experiment. The dimensionless pressure distribution is shown. A comparison of the CFD results and the experimental results is made to prove that the numerical simulation methods are correct and accurate. The curve of the numerical simulation results is very close to that of the experimental results with the similar trend. It is concluded that the methods can predict the internal flow field characteristics of the axial flow cyclone separator.


Author(s):  
Bassam Mohammad ◽  
San-Mou Jeng ◽  
M. Gurhan Andac

Transverse dilution jets are widely used in combustion systems. The current research provides a detailed study of the primary jets of a realistic annular combustion chamber sector. The combustor sector comprises an aerodynamic diffuser, inlet cowl, combustion dome, primary dilution jets, secondary dilution jets and cooling strips to provide convective cooling to the liner. The chamber contracts toward the end to fit the turbine nozzle ring. 2D PIV is employed at an atmospheric pressure drop of 4% (isothermal) to delineate the flow field characteristics. The laser is introduced to the sector through the exit flange. The interaction between the primary jets and the swirling flow as well as the sensitivity of the primary jets to perturbations is discussed. The perturbation study includes: effect of partially blocking the jets, one at a time, the effect of blocking the convective cooling holes, placed underneath the primary jets and shooting perpendicular to it. In addition, the effect of reducing the size of the primary jets as well as off-centering the primary jets is explained. Moreover, PIV is employed to study the flow field with and without fuel injection at four different fuel flow rates. The results show that the flow field is very sensitive to perturbations. The cooling air interacts with the primary jet and influences the flow field although the momentum ratio has a 100:1 order of magnitude. The results also show that the big primary jets dictate the flow field in the primary zone as well as the secondary zone. However, relatively smaller jets mainly influence the primary combustion zone because most of the jet is recirculated back to the CRZ. Also, the jet penetration is reduced with 25% and 11.5% corresponding to a 77% and 62% reduction of the jet’s area respectively. The study indicates the presence of a critical jet diameter beyond which the dilution jets have minimum impact on the secondary region. The jet off-centering shows significant effect on the flow field though it is in the order of 0.4 mm. The fuel injection is also shown to influence the flow field as well as the primary jets angle. High fuel flow rate is shown to have very strong impact on the flow field and thus results in a strong distortion of both the primary and secondary zones. The results provide useful methods to be used in the flow field structure control. Most of the effects shown are attributed to the difference in jet opposition. Hence, the results are applicable to reacting flow.


2013 ◽  
Vol 853 ◽  
pp. 377-383
Author(s):  
Zhian Deng ◽  
Hao Yun Deng ◽  
Mei Xie

In order to ensure safety and reliable operation of the natural gas pipeline drainage valve,the 3D numerical simulation on flow field characteristics inside the drainage valve of the natural gas pipeline under the different conditions of the seasons of winter and summer is carried out by using the standard model. In the tow different season condition, the streamline and velocity vector distribution inside the drainage valve has been studied. Under the two seasons conditions are studied. The results show that as the change of drainage valve opening the turbulence appear in the valve and the maximum value appears in the inlet,which the winter is larger than summer.The velocity vector distribution in the drainage valve is not the same and the larger velocity appears at the drain exit with the valve opening increasing. The differences in temperature, condensate discharge, condensate gas pipeline in different displacement,density and viscosity in the winter seasons and summer seasons results in the different characteristic.of the flow field characteristics inside discharging valve.


Sign in / Sign up

Export Citation Format

Share Document