scholarly journals The radiation therapy in keloids treatment: a comprehensive review of pathomechanism, damage mechanisms and cellular response

2017 ◽  
Vol 4 (7) ◽  
Author(s):  
Jing Xu ◽  
Elan Yang ◽  
Nan-Ze Yu ◽  
You-Bin Wang ◽  
Xiao Long
2017 ◽  
Vol 23 (18) ◽  
pp. 5469-5479 ◽  
Author(s):  
Jeho Jeong ◽  
Jung Hun Oh ◽  
Jan-Jakob Sonke ◽  
Jose Belderbos ◽  
Jeffrey D. Bradley ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yong-Li Dong ◽  
Gangadhara P. Vadla ◽  
Jin-Yu (Jim) Lu ◽  
Vakil Ahmad ◽  
Thomas J. Klein ◽  
...  

AbstractOncogenic RAS mutations are associated with tumor resistance to radiation therapy. Cell-cell interactions in the tumor microenvironment (TME) profoundly influence therapy outcomes. However, the nature of these interactions and their role in Ras tumor radioresistance remain unclear. Here we use Drosophila oncogenic Ras tissues and human Ras cancer cell radiation models to address these questions. We discover that cellular response to genotoxic stress cooperates with oncogenic Ras to activate JAK/STAT non-cell autonomously in the TME. Specifically, p53 is heterogeneously activated in Ras tumor tissues in response to irradiation. This mosaicism allows high p53-expressing Ras clones to stimulate JAK/STAT cytokines, which activate JAK/STAT in the nearby low p53-expressing surviving Ras clones, leading to robust tumor re-establishment. Blocking any part of this cell-cell communication loop re-sensitizes Ras tumor cells to irradiation. These findings suggest that coupling STAT inhibitors to radiotherapy might improve clinical outcomes for Ras cancer patients.


2011 ◽  
Vol 18 (4) ◽  
pp. 630-636 ◽  
Author(s):  
Carl N. Sprung ◽  
Marian Cholewa ◽  
Noriko Usami ◽  
Katsumi Kobayashi ◽  
Jeffrey C. Crosbie

A novel synchrotron-based approach, known as microbeam radiation therapy (MRT), currently shows considerable promise in increased tumour control and reduced normal tissue damage compared with conventional radiotherapy. Different microbeam widths and separations were investigated using a controlled cell culture system and monoenergetic (5.35 keV) synchrotron X-rays in order to gain further insight into the underlying cellular response to MRT. DNA damage and repair was measured using fluorescent antibodies against phosphorylated histone H2AX, which also allowed us to verify the exact location of the microbeam path. Beam dimensions that reproduced promising MRT strategies were used to identify useful methods to study the underpinnings of MRT. These studies include the investigation of different spatial configurations on bystander effects. γH2AX foci number were robustly induced in directly hit cells and considerable DNA double-strand break repair occurred by 12 h post-10 Gy irradiation; however, many cells had some γH2AX foci at the 12 h time point. γH2AX foci at later time points did not directly correspond with the targeted regions suggesting cell movement or bystander effects as a potential mechanism for MRT effectiveness. Partial irradiation of single nuclei was also investigated and in most cases γH2AX foci were not observed outside the field of irradiation within 1 h after irradiation indicating very little chromatin movement in this time frame. These studies contribute to the understanding of the fundamental radiation biology relating to the MRT response, a potential new therapy for cancer patients.


Sign in / Sign up

Export Citation Format

Share Document