scholarly journals Unmasking tumor heterogeneity and clonal evolution by single-cell analysis

2018 ◽  
Vol 4 (8) ◽  
pp. 47 ◽  
Author(s):  
Xiaoshan Shi ◽  
Papia Chakraborty ◽  
Amitabha Chaudhuri
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lamia Madaci ◽  
Julien Colle ◽  
Geoffroy Venton ◽  
Laure Farnault ◽  
Béatrice Loriod ◽  
...  

AbstractAfter decades during which the treatment of acute myeloblastic leukemia was limited to variations around a skeleton of cytarabine/anthracycline, targeted therapies appeared. These therapies, first based on monoclonal antibodies, also rely on specific inhibitors of various molecular abnormalities. A significant but modest prognosis improvement has been observed thanks to these new treatments that are limited by a high rate of relapse, due to the intrinsic chemo and immune-resistance of leukemia stem cell, together with the acquisition of these resistances by clonal evolution. Relapses are also influenced by the equilibrium between the pro or anti-tumor signals from the bone marrow stromal microenvironment and immune effectors. What should be the place of the targeted therapeutic options in light of the tumor heterogeneity inherent to leukemia and the clonal drift of which this type of tumor is capable? Novel approaches by single cell analysis and next generation sequencing precisely define clonal heterogeneity and evolution, leading to a personalized and time variable adapted treatment. Indeed, the evolution of leukemia, either spontaneous or under therapy selection pressure, is a very complex phenomenon. The model of linear evolution is to be forgotten because single cell analysis of samples at diagnosis and at relapse show that tumor escape to therapy occurs from ancestral as well as terminal clones. The determination by the single cell technique of the trajectories of the different tumor sub-populations allows the identification of clones that accumulate factors of resistance to chemo/immunotherapy (“pan-resistant clones”), making possible to choose the combinatorial agents most likely to eradicate these cells. In addition, the single cell technique identifies the nature of each cell and can analyze, on the same sample, both the tumor cells and their environment. It is thus possible to evaluate the populations of immune effectors (T-lymphocytes, natural killer cells) for the leukemia stress-induced alteration of their functions. Finally, the single cells techniques are an invaluable tool for evaluation of the measurable residual disease since not only able to quantify but also to determine the most appropriate treatment according to the sensitivity profile to immuno-chemotherapy of remaining leukemic cells.


Author(s):  
Renumathy Dhanasekaran

AbstractTumor heterogeneity, a key hallmark of hepatocellular carcinomas (HCCs), poses a significant challenge to developing effective therapies or predicting clinical outcomes in HCC. Recent advances in next-generation sequencing-based multi-omic and single cell analysis technologies have enabled us to develop high-resolution atlases of tumors and pull back the curtain on tumor heterogeneity. By combining multiregion targeting sampling strategies with deep sequencing of the genome, transcriptome, epigenome, and proteome, several studies have revealed novel mechanistic insights into tumor initiation and progression in HCC. Advances in multiparametric immune cell profiling have facilitated a deeper dive into the biological complexity of HCC, which is crucial in this era of immunotherapy. Moreover, studies using liquid biopsy have demonstrated their potential to circumvent the need for tissue sampling to investigate heterogeneity. In this review, we discuss how multi-omic and single-cell sequencing technologies have advanced our understanding of tumor heterogeneity in HCC.


Immunobiology ◽  
2000 ◽  
Vol 201 (5) ◽  
pp. 631-644 ◽  
Author(s):  
Sven Golembowski ◽  
Sylke Gellrich ◽  
Malgorszata Von Zimmermann ◽  
Sascha Rutz ◽  
Steffen Lippert ◽  
...  

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Satoi Nagasawa ◽  
Yukie Kashima ◽  
Ayako Suzuki ◽  
Yutaka Suzuki

AbstractEven within a single type of cancer, cells of various types exist and play interrelated roles. Each of the individual cells resides in a distinct microenvironment and behaves differently. Such heterogeneity is the most cumbersome nature of cancers, which is occasionally uncountable when effective prevention or total elimination of cancers is attempted. To understand the heterogeneous nature of each cell, the use of conventional methods for the analysis of “bulk” cells is insufficient. Although some methods are high-throughput and compressive regarding the genes being detected, the obtained data would be from the cell mass, and the average of a large number of the component cells would no longer be measured. Single-cell analysis, which has developed rapidly in recent years, is causing a drastic change. Genome, transcriptome, and epigenome analyses at single-cell resolution currently target cancer cells, cancer-associated fibroblasts, endothelial cells of vessels, and circulating and infiltrating immune cells. In fact, surprisingly diverse features of clonal evolution of cancer cells, during the development of cancer or acquisition of drug resistance, accompanied by corresponding gene expression changes in the circumstantial stromal cells, appeared in recent single-cell analyses. Based on the obtained novel insights, better optimal drug selection and new drug administration sequences were started. Even a remaining concern of the single cell analyses is being addressed. Until very recently, it was impossible to obtain positional information of cells in cancer via single-cell analysis because such information is lost during preparation of single-cell suspensions. A new method, collectively called spatial transcriptome (ST) analysis, has been developed and rapidly applied to various clinical specimens. In this review, we first outline the recent achievements of single-cell cancer analysis in analyzing the molecular basis underlying the acquisition of drug resistance, particularly focusing on the latest anti-epidermal growth factor receptor tyrosine kinase inhibitor, osimertinib. Further, we review the currently available ST analysis methods and introduce our recent attempts regarding the respective topics.


2016 ◽  
Vol 81 ◽  
pp. 269-274 ◽  
Author(s):  
David T. Miyamoto ◽  
David T. Ting ◽  
Mehmet Toner ◽  
Shyamala Maheswaran ◽  
Daniel A. Haber

Sign in / Sign up

Export Citation Format

Share Document