scholarly journals METHOD OF SYSTEM ENGINEERING OF NEURAL MACHINE TRANSLATION SYSTEMS

Author(s):  
Pavlo P. Maslianko ◽  
Yevhenii P. Sielskyi

Background. There are not many machine translation companies on the market whose products are in demand. These are, for example, free and commercial products such as “GoogleTranslate”, “DeepLTranslator”, “ModernMT”, “Apertium”, “Trident”, to name a few. To implement a more efficient and productive process for developing high-quality neural machine translation systems (NMTS), appropriate scientifically based methods of NMTS engineering are needed in order to get a high-quality and competitive product as quickly as possible. Objective. The purpose of this article is to apply the Eriksson-Penker business profile to the development and formalization of a method for system engineering of NMTS. Methods. The idea behind the neural machine translation system engineering method is to apply the Eriksson-Penker system engineering methodology and business profile to formalize an ordered way to develop NMT systems. Results. The method of developing NMT systems based on the use of system engineering techniques consists of three main stages. At the first stage, the structure of the NMT system is modelled in the form of an Eriksson-Penker business profile. At the second stage, a set of processes is determined that is specific to the class of Data Science systems, and the international CRISP-DM standard. At the third stage, verification and validation of the developed NMTS is carried out. Conclusions. The article proposes a method of system engineering of NMTS based on the modified Erickson-Penker business profile representation of the system at the meta-level, as well as international process standards of Data Science and Data Mining. The effectiveness of using this method was studied on the example of developing a bidirectional English-Ukrainian NMTS EUMT (English-Ukrainian Machine Translator) and it was found that the EUMT system is at least as good as the quality of English-Ukrainian translation of the popular Google Translate translator. The full version code of the EUMT system is published on the GitHub platform and is available at: https://github.com/EugeneSel/EUMT.

2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


Author(s):  
Anna Fernández Torné ◽  
Anna Matamala

This article aims to compare three machine translation systems with a focus on human evaluation. The systems under analysis are a domain-adapted statistical machine translation system, a domain-adapted neural machine translation system and a generic machine translation system. The comparison is carried out on translation from Spanish into German with industrial documentation of machine tool components and processes. The focus is on the human evaluation of the machine translation output, specifically on: fluency, adequacy and ranking at the segment level; fluency, adequacy, need for post-editing, ease of post-editing, and mental effort required in post-editing at the document level; productivity (post-editing speed and post-editing effort) and attitudes. Emphasis is placed on human factors in the evaluation process.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Bharathi Raja Chakravarthi ◽  
Priya Rani ◽  
Mihael Arcan ◽  
John P. McCrae

AbstractMachine translation is one of the applications of natural language processing which has been explored in different languages. Recently researchers started paying attention towards machine translation for resource-poor languages and closely related languages. A widespread and underlying problem for these machine translation systems is the linguistic difference and variation in orthographic conventions which causes many issues to traditional approaches. Two languages written in two different orthographies are not easily comparable but orthographic information can also be used to improve the machine translation system. This article offers a survey of research regarding orthography’s influence on machine translation of under-resourced languages. It introduces under-resourced languages in terms of machine translation and how orthographic information can be utilised to improve machine translation. We describe previous work in this area, discussing what underlying assumptions were made, and showing how orthographic knowledge improves the performance of machine translation of under-resourced languages. We discuss different types of machine translation and demonstrate a recent trend that seeks to link orthographic information with well-established machine translation methods. Considerable attention is given to current efforts using cognate information at different levels of machine translation and the lessons that can be drawn from this. Additionally, multilingual neural machine translation of closely related languages is given a particular focus in this survey. This article ends with a discussion of the way forward in machine translation with orthographic information, focusing on multilingual settings and bilingual lexicon induction.


2020 ◽  
pp. 1137-1154
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


Author(s):  
A.V. Kozina ◽  
Yu.S. Belov

Automatically assessing the quality of machine translation is an important yet challenging task for machine translation research. Translation quality assessment is understood as predicting translation quality without reference to the source text. Translation quality depends on the specific machine translation system and often requires post-editing. Manual editing is a long and expensive process. Since the need to quickly determine the quality of translation increases, its automation is required. In this paper, we propose a quality assessment method based on ensemble supervised machine learning methods. The bilingual corpus WMT 2019 for the EnglishRussian language pair was used as data. The text data volume is 17089 sentences, 85% of the data was used for training, and 15% for testing the model. Linguistic functions extracted from the text in the source and target languages were used as features for training the system, since it is these characteristics that can most accurately characterize the translation in terms of quality. The following tools were used for feature extraction: a free language modeling tool based on SRILM and a Stanford POS Tagger parts of speech tagger. Before training the system, the text was preprocessed. The model was trained using three regression methods: Bagging, Extra Tree, and Random Forest. The algorithms were implemented in the Python programming language using the Scikit learn library. The parameters of the random forest method have been optimized using a grid search. The performance of the model was assessed by the mean absolute error MAE and the root mean square error RMSE, as well as by the Pearsоn coefficient, which determines the correlation with human judgment. Testing was carried out using three machine translation systems: Google and Bing neural systems, Mouses statistical machine translation systems based on phrases and based on syntax. Based on the results of the work, the method of additional trees showed itself best. In addition, for all categories of indicators under consideration, the best results are achieved using the Google machine translation system. The developed method showed good results close to human judgment. The system can be used for further research in the task of assessing the quality of translation.


2019 ◽  
Vol 28 (3) ◽  
pp. 455-464 ◽  
Author(s):  
M. Anand Kumar ◽  
B. Premjith ◽  
Shivkaran Singh ◽  
S. Rajendran ◽  
K. P. Soman

Abstract In recent years, the multilingual content over the internet has grown exponentially together with the evolution of the internet. The usage of multilingual content is excluded from the regional language users because of the language barrier. So, machine translation between languages is the only possible solution to make these contents available for regional language users. Machine translation is the process of translating a text from one language to another. The machine translation system has been investigated well already in English and other European languages. However, it is still a nascent stage for Indian languages. This paper presents an overview of the Machine Translation in Indian Languages shared task conducted on September 7–8, 2017, at Amrita Vishwa Vidyapeetham, Coimbatore, India. This machine translation shared task in Indian languages is mainly focused on the development of English-Tamil, English-Hindi, English-Malayalam and English-Punjabi language pairs. This shared task aims at the following objectives: (a) to examine the state-of-the-art machine translation systems when translating from English to Indian languages; (b) to investigate the challenges faced in translating between English to Indian languages; (c) to create an open-source parallel corpus for Indian languages, which is lacking. Evaluating machine translation output is another challenging task especially for Indian languages. In this shared task, we have evaluated the participant’s outputs with the help of human annotators. As far as we know, this is the first shared task which depends completely on the human evaluation.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050002
Author(s):  
Taichi Aida ◽  
Kazuhide Yamamoto

Current methods of neural machine translation may generate sentences with different levels of quality. Methods for automatically evaluating translation output from machine translation can be broadly classified into two types: a method that uses human post-edited translations for training an evaluation model, and a method that uses a reference translation that is the correct answer during evaluation. On the one hand, it is difficult to prepare post-edited translations because it is necessary to tag each word in comparison with the original translated sentences. On the other hand, users who actually employ the machine translation system do not have a correct reference translation. Therefore, we propose a method that trains the evaluation model without using human post-edited sentences and in the test set, estimates the quality of output sentences without using reference translations. We define some indices and predict the quality of translations with a regression model. For the quality of the translated sentences, we employ the BLEU score calculated from the number of word [Formula: see text]-gram matches between the translated sentence and the reference translation. After that, we compute the correlation between quality scores predicted by our method and BLEU actually computed from references. According to the experimental results, the correlation with BLEU is the highest when XGBoost uses all the indices. Moreover, looking at each index, we find that the sentence log-likelihood and the model uncertainty, which are based on the joint probability of generating the translated sentence, are important in BLEU estimation.


Sign in / Sign up

Export Citation Format

Share Document