scholarly journals A Survey of Orthographic Information in Machine Translation

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Bharathi Raja Chakravarthi ◽  
Priya Rani ◽  
Mihael Arcan ◽  
John P. McCrae

AbstractMachine translation is one of the applications of natural language processing which has been explored in different languages. Recently researchers started paying attention towards machine translation for resource-poor languages and closely related languages. A widespread and underlying problem for these machine translation systems is the linguistic difference and variation in orthographic conventions which causes many issues to traditional approaches. Two languages written in two different orthographies are not easily comparable but orthographic information can also be used to improve the machine translation system. This article offers a survey of research regarding orthography’s influence on machine translation of under-resourced languages. It introduces under-resourced languages in terms of machine translation and how orthographic information can be utilised to improve machine translation. We describe previous work in this area, discussing what underlying assumptions were made, and showing how orthographic knowledge improves the performance of machine translation of under-resourced languages. We discuss different types of machine translation and demonstrate a recent trend that seeks to link orthographic information with well-established machine translation methods. Considerable attention is given to current efforts using cognate information at different levels of machine translation and the lessons that can be drawn from this. Additionally, multilingual neural machine translation of closely related languages is given a particular focus in this survey. This article ends with a discussion of the way forward in machine translation with orthographic information, focusing on multilingual settings and bilingual lexicon induction.

2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jing Ning ◽  
Haidong Ban

With the development of linguistics and the improvement of computer performance, the effect of machine translation is getting better and better, and it is widely used. The automatic expression translation method based on the Chinese-English machine takes short sentences as the basic translation unit and makes full use of the order of short sentences. Compared with word-based statistical machine translation methods, the effect is greatly improved. The performance of machine translation is constantly improving. This article aims to study the design of phrase-based automatic machine translation systems by introducing machine translation methods and Chinese-English phrase translation, explore the design and testing of machine automatic translation systems based on the combination of Chinese-English phrase translation, and explain the role of machine automatic translation in promoting the development of translation. In this article, through the combination of machine translation experiments and machine automatic translation system design methods, the design and testing of machine automatic translation systems based on Chinese-English phrase translation combinations are studied to cultivate people's understanding of language, knowledge, and intelligence and then help solve other problems. Language processing issues promote the development of corpus linguistics. The experimental results in this article show that when the Chinese-English phrase translation probability table is changed from 82% to 51%, the BLEU translation evaluation system for the combination of Chinese-English phrases is improved. Automatic machine translation saves time and energy of translation work, which shows that machine translation shows its advantages due to its short development cycle and easy processing of large-scale corpora.


Author(s):  
Anna Fernández Torné ◽  
Anna Matamala

This article aims to compare three machine translation systems with a focus on human evaluation. The systems under analysis are a domain-adapted statistical machine translation system, a domain-adapted neural machine translation system and a generic machine translation system. The comparison is carried out on translation from Spanish into German with industrial documentation of machine tool components and processes. The focus is on the human evaluation of the machine translation output, specifically on: fluency, adequacy and ranking at the segment level; fluency, adequacy, need for post-editing, ease of post-editing, and mental effort required in post-editing at the document level; productivity (post-editing speed and post-editing effort) and attitudes. Emphasis is placed on human factors in the evaluation process.


Author(s):  
Pavlo P. Maslianko ◽  
Yevhenii P. Sielskyi

Background. There are not many machine translation companies on the market whose products are in demand. These are, for example, free and commercial products such as “GoogleTranslate”, “DeepLTranslator”, “ModernMT”, “Apertium”, “Trident”, to name a few. To implement a more efficient and productive process for developing high-quality neural machine translation systems (NMTS), appropriate scientifically based methods of NMTS engineering are needed in order to get a high-quality and competitive product as quickly as possible. Objective. The purpose of this article is to apply the Eriksson-Penker business profile to the development and formalization of a method for system engineering of NMTS. Methods. The idea behind the neural machine translation system engineering method is to apply the Eriksson-Penker system engineering methodology and business profile to formalize an ordered way to develop NMT systems. Results. The method of developing NMT systems based on the use of system engineering techniques consists of three main stages. At the first stage, the structure of the NMT system is modelled in the form of an Eriksson-Penker business profile. At the second stage, a set of processes is determined that is specific to the class of Data Science systems, and the international CRISP-DM standard. At the third stage, verification and validation of the developed NMTS is carried out. Conclusions. The article proposes a method of system engineering of NMTS based on the modified Erickson-Penker business profile representation of the system at the meta-level, as well as international process standards of Data Science and Data Mining. The effectiveness of using this method was studied on the example of developing a bidirectional English-Ukrainian NMTS EUMT (English-Ukrainian Machine Translator) and it was found that the EUMT system is at least as good as the quality of English-Ukrainian translation of the popular Google Translate translator. The full version code of the EUMT system is published on the GitHub platform and is available at: https://github.com/EugeneSel/EUMT.


2020 ◽  
pp. 1137-1154
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Avinash Singh ◽  
Asmeet Kour ◽  
Shubhnandan S. Jamwal

The objective behind this paper is to analyze the English-Dogri parallel corpus translation. Machine translation is the translation from one language into another language. Machine translation is the biggest application of the Natural Language Processing (NLP). Moses is statistical machine translation system allow to train translation models for any language pair. We have developed translation system using Statistical based approach which helps in translating English to Dogri and vice versa. The parallel corpus consists of 98,973 sentences. The system gives accuracy of 80% in translating English to Dogri and the system gives accuracy of 87% in translating Dogri to English system.


Author(s):  
A.V. Kozina ◽  
Yu.S. Belov

Automatically assessing the quality of machine translation is an important yet challenging task for machine translation research. Translation quality assessment is understood as predicting translation quality without reference to the source text. Translation quality depends on the specific machine translation system and often requires post-editing. Manual editing is a long and expensive process. Since the need to quickly determine the quality of translation increases, its automation is required. In this paper, we propose a quality assessment method based on ensemble supervised machine learning methods. The bilingual corpus WMT 2019 for the EnglishRussian language pair was used as data. The text data volume is 17089 sentences, 85% of the data was used for training, and 15% for testing the model. Linguistic functions extracted from the text in the source and target languages were used as features for training the system, since it is these characteristics that can most accurately characterize the translation in terms of quality. The following tools were used for feature extraction: a free language modeling tool based on SRILM and a Stanford POS Tagger parts of speech tagger. Before training the system, the text was preprocessed. The model was trained using three regression methods: Bagging, Extra Tree, and Random Forest. The algorithms were implemented in the Python programming language using the Scikit learn library. The parameters of the random forest method have been optimized using a grid search. The performance of the model was assessed by the mean absolute error MAE and the root mean square error RMSE, as well as by the Pearsоn coefficient, which determines the correlation with human judgment. Testing was carried out using three machine translation systems: Google and Bing neural systems, Mouses statistical machine translation systems based on phrases and based on syntax. Based on the results of the work, the method of additional trees showed itself best. In addition, for all categories of indicators under consideration, the best results are achieved using the Google machine translation system. The developed method showed good results close to human judgment. The system can be used for further research in the task of assessing the quality of translation.


2020 ◽  
Vol 184 ◽  
pp. 01061
Author(s):  
Anusha Anugu ◽  
Gajula Ramesh

Machine translation has gradually developed in past 1940’s.It has gained more and more attention because of effective and efficient nature. As it makes the translation automatically without the involvement of human efforts. The distinct models of machine translation along with “Neural Machine Translation (NMT)” is summarized in this paper. Researchers have previously done lots of work on Machine Translation techniques and their evaluation techniques. Thus, we want to demonstrate an analysis of the existing techniques for machine translation including Neural Machine translation, their differences and the translation tools associated with them. Now-a-days the combination of two Machine Translation systems has the full advantage of using features from both the systems which attracts in the domain of natural language processing. So, the paper also includes the literature survey of the Hybrid Machine Translation (HMT).


Sign in / Sign up

Export Citation Format

Share Document