scholarly journals Phase Transition to Quadrupolar Vortices in a Spherical Model of the Energy-Enstrophy Theory — Exact Solution

2020 ◽  
Vol 16 (4) ◽  
pp. 543-555
Author(s):  
C.C. Lim ◽  

A new energy-enstrophy model for the equilibrium statistical mechanics of barotropic flow on a sphere is introduced and solved exactly for phase transitions to quadrupolar vortices when the kinetic energy level is high. Unlike the Kraichnan theory, which is a Gaussian model, we substitute a microcanonical enstrophy constraint for the usual canonical one, a step which is based on sound physical principles. This yields a spherical model with zero total circulation, a microcanonical enstrophy constraint and a canonical constraint on energy, with angular momentum fixed to zero. A closed-form solution of this spherical model, obtained by the Kac – Berlin method of steepest descent, provides critical temperatures and amplitudes of the symmetry-breaking quadrupolar vortices. This model and its results differ from previous solvable models for related phenomena in the sense that they are not based on a mean-field assumption.


2020 ◽  
Vol 28 (2) ◽  
pp. 88-103 ◽  
Author(s):  
Vincenzo Russo ◽  
Rosella Giacometti ◽  
Frank J. Fabozzi


2020 ◽  
pp. 106-158
Author(s):  
Giuseppe Mussardo

Chapter 3 discusses the approximation schemes used to approach lattice statistical models that are not exactly solvable. In addition to the mean field approximation, it also considers the Bethe–Peierls approach to the Ising model. Moreover, there is a thorough discussion of the Gaussian model and its spherical version, both of which are two important systems with several points of interest. A chapter appendix provides a detailed analysis of the random walk on different lattices: apart from the importance of the subject on its own, it explains how the random walk is responsible for the critical properties of the spherical model.



2021 ◽  
Vol 37 (4) ◽  
pp. 453-464
Author(s):  
Đỗ Văn Tiến ◽  
Csaba Rotter

To save energy consumption of Ethernet switches, IEEE has standardized a new energy-efficient operation for Ethernet links with a low-power state and transition mechanisms between the high-power state for transporting traffic and the low-power state.In this paper, we propose a queueing model with the Markov Modulated Compound Poisson Process that is able to characterize backbone packet traffic. We derive a closed-form solution for the stationary distribution of the proposed queueing model. We show that our model can capture an entire system where the transition times are constant.



Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 933
Author(s):  
Limin Liu ◽  
Yingying Cui

This paper is devoted to the study of the pricing of European options under a non-Gaussian model. This model follows a non-extensive statistical mechanics which can better describe the fractal characteristics of price movement in the financial market. Moreover, we present a simple but precise least-square method for approximation and obtain a closed-form solution of the price of European options. The advantages of this technique are illustrated by numerical simulation, which shows that the least-squares method is better compared with Borland’s two methods in 2002 and 2004.



2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis


1995 ◽  
Vol 23 (1) ◽  
pp. 2-10 ◽  
Author(s):  
J. K. Thompson

Abstract Vehicle interior noise is the result of numerous sources of excitation. One source involving tire pavement interaction is the tire air cavity resonance and the forcing it provides to the vehicle spindle: This paper applies fundamental principles combined with experimental verification to describe the tire cavity resonance. A closed form solution is developed to predict the resonance frequencies from geometric data. Tire test results are used to examine the accuracy of predictions of undeflected and deflected tire resonances. Errors in predicted and actual frequencies are shown to be less than 2%. The nature of the forcing this resonance as it applies to the vehicle spindle is also examined.



Author(s):  
Nguyen N. Tran ◽  
Ha X. Nguyen

A capacity analysis for generally correlated wireless multi-hop multi-input multi-output (MIMO) channels is presented in this paper. The channel at each hop is spatially correlated, the source symbols are mutually correlated, and the additive Gaussian noises are colored. First, by invoking Karush-Kuhn-Tucker condition for the optimality of convex programming, we derive the optimal source symbol covariance for the maximum mutual information between the channel input and the channel output when having the full knowledge of channel at the transmitter. Secondly, we formulate the average mutual information maximization problem when having only the channel statistics at the transmitter. Since this problem is almost impossible to be solved analytically, the numerical interior-point-method is employed to obtain the optimal solution. Furthermore, to reduce the computational complexity, an asymptotic closed-form solution is derived by maximizing an upper bound of the objective function. Simulation results show that the average mutual information obtained by the asymptotic design is very closed to that obtained by the optimal design, while saving a huge computational complexity.





Sign in / Sign up

Export Citation Format

Share Document