scholarly journals Diagnostics and treatment of traumatic brain injury in children

2009 ◽  
Vol 8 (1) ◽  
pp. 61-63
Author(s):  
D. V. Kolmakov

In this work, we have analyzed 2 774 case records of children after traumatic brain injury for the period of 2003 to 2007 (based on materials of the Tomsk Municipal Children’s Hospital No. 4). The age structure and causes of a traumatic brain injury have been analyzed. Most often complaints of children coming to the hospital are revealed, as well as typical changes in the cerebral hemodynamics (from the data of по данным rheoencephalography) and some parameters characterizing the neurological status of patients immediately after the injury and six months later. Based on the analysis of case records and health status questionnaires of children having traumatic brain injury up to six months later, it is shown that parents of patients in some cases do not adhere doctor’s recommendations after leaving the hospital. The therapy of traumatic brain injury in children requires successive treatment in hospital and at home and development of simple and acceptable rehabilitation schemes for children.

2020 ◽  
Vol 132 (6) ◽  
pp. 1952-1960 ◽  
Author(s):  
Seung-Bo Lee ◽  
Hakseung Kim ◽  
Young-Tak Kim ◽  
Frederick A. Zeiler ◽  
Peter Smielewski ◽  
...  

OBJECTIVEMonitoring intracranial and arterial blood pressure (ICP and ABP, respectively) provides crucial information regarding the neurological status of patients with traumatic brain injury (TBI). However, these signals are often heavily affected by artifacts, which may significantly reduce the reliability of the clinical determinations derived from the signals. The goal of this work was to eliminate signal artifacts from continuous ICP and ABP monitoring via deep learning techniques and to assess the changes in the prognostic capacities of clinical parameters after artifact elimination.METHODSThe first 24 hours of monitoring ICP and ABP in a total of 309 patients with TBI was retrospectively analyzed. An artifact elimination model for ICP and ABP was constructed via a stacked convolutional autoencoder (SCAE) and convolutional neural network (CNN) with 10-fold cross-validation tests. The prevalence and prognostic capacity of ICP- and ABP-related clinical events were compared before and after artifact elimination.RESULTSThe proposed SCAE-CNN model exhibited reliable accuracy in eliminating ABP and ICP artifacts (net prediction rates of 97% and 94%, respectively). The prevalence of ICP- and ABP-related clinical events (i.e., systemic hypotension, intracranial hypertension, cerebral hypoperfusion, and poor cerebrovascular reactivity) all decreased significantly after artifact removal.CONCLUSIONSThe SCAE-CNN model can be reliably used to eliminate artifacts, which significantly improves the reliability and efficacy of ICP- and ABP-derived clinical parameters for prognostic determinations after TBI.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tatyana Mollayeva ◽  
Mitchell Sutton ◽  
Vincy Chan ◽  
Angela Colantonio ◽  
Sayantee Jana ◽  
...  

Neurosurgery ◽  
2011 ◽  
Vol 68 (3) ◽  
pp. 588-600 ◽  
Author(s):  
Charles S. Cox ◽  
James E. Baumgartner ◽  
Matthew T. Harting ◽  
Laura L. Worth ◽  
Peter A. Walker ◽  
...  

Abstract BACKGROUND: Severe traumatic brain injury (TBI) in children is associated with substantial long-term morbidity and mortality. Currently, there are no successful neuroprotective/neuroreparative treatments for TBI. Numerous preclinical studies suggest that bone marrow-derived mononuclear cells (BMMNCs), their derivative cells (marrow stromal cells), or similar cells (umbilical cord blood cells) offer neuroprotection. OBJECTIVE: To determine whether autologous BMMNCs are a safe treatment for severe TBI in children. METHODS: Ten children aged 5 to 14 years with a postresuscitation Glasgow Coma Scale of 5 to 8 were treated with 6 × 106 autologous BMMNCs/kg body weight delivered intravenously within 48 hours after TBI. To determine the safety of the procedure, systemic and cerebral hemodynamics were monitored during bone marrow harvest; infusion-related toxicity was determined by pediatric logistic organ dysfunction (PELOD) scores, hepatic enzymes, Murray lung injury scores, and renal function. Conventional magnetic resonance imaging (cMRI) data were obtained at 1 and 6 months postinjury, as were neuropsychological and functional outcome measures. RESULTS: All patients survived. There were no episodes of harvest-related depression of systemic or cerebral hemodynamics. There was no detectable infusion-related toxicity as determined by PELOD score, hepatic enzymes, Murray lung injury scores, or renal function. cMRI imaging comparing gray matter, white matter, and CSF volumes showed no reduction from 1 to 6 months postinjury. Dichotomized Glasgow Outcome Score at 6 months showed 70% with good outcomes and 30% with moderate to severe disability. CONCLUSION: Bone marrow harvest and intravenous mononuclear cell infusion as treatment for severe TBI in children is logistically feasible and safe.


Author(s):  
О.V. Volkovich ◽  
◽  
G.А. Zakharov ◽  
G.I. Gorokhova ◽  
◽  
...  

2020 ◽  
Vol 11 (Vol.11, no.3) ◽  
pp. 368-371
Author(s):  
Corina ROMAN-FILIP ◽  
Maria-Gabriela CATANĂ

Noticeable advances have occurred in the field of traumatic brain injury in the past ten years. Brain imagery provides a more precise representation of what occurs in the brain, diffuse axonal injury being an important cause of morbidity and mortality in patients with traumatic brain injury. We present 2 cases that were admitted and discharged from our department. Actually we want to emphasize differences and similarities between the two cases and to highlight different sequelae that traumatic brain injury can do in young patients. Both patients were admitted in a critical state – GCS 4 points and were discharged with an improved neurological status after approximately 30 days. We decided to present these cases to issue a warning about the rehabilitation for these patients which most of the times have a prolonged hospitalization. We wanted to highlight that the rehabilitation does not consist only in the motor part, but in the psychiatric and behaviour part too.


Sign in / Sign up

Export Citation Format

Share Document