scholarly journals Genetic Diversity Assessment in Pigeonpea Cultivars Using Microsatellite (SSR) Markers

Author(s):  
Nagaraj Hullur ◽  
B.N. Radha ◽  
B. Basavaraja ◽  
B.C. Channakeshava ◽  
M. Byregowda
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Raphael Adu-Gyamfi ◽  
Ruth Prempeh ◽  
Issahaku Zakaria

In Ghana, sesame is cultivated in some districts of northern Ghana. Genotypes cultivated are land races that are low yielding leading to decline in production. There is the need for improvement of these land races to generate high yielding cultivars. Characterization of genetic diversity of the sesame land races will be of great value in assisting in parental lines selection for sesame breeding programmes in Ghana. Twenty-five sesame land races were collected from five districts in northern Ghana noted for sesame cultivation. Seeds collected were planted in three replicates in randomized complete block design and were evaluated for a number of morphological characters. Data collected were subjected to Principal Component Analysis (PCA) and a dendrogram showing similarity between the accessions were drawn. Data on number of capsules per plant, number of seeds per capsule, and plant height at flowering were subjected to analysis of variance using GenStat Discovery Edition 4. Molecular genetic diversity was assessed by using thirty eight SSR markers widely distributed across sesame genome to characterize the materials. Twenty-one out of the 38 primers were polymorphic. Cluster analyses using the Euclidean similarity test and a complete link clustering method were used to make a dendrogram out of the morphological data. Analysis of variance showed that capsule number was significantly different; a range of 54.9 and 146.7 was produced. The number of seeds per capsule varied significantly and the variation between highest and lowest accession in seed production was 33%. Plant height was also significantly different ranging from 60.6 to 94.1 cm. Using morphological traits the accessions clustered into two major groups and two minor groups and variation among accessions were 10-61%. On the other hand, SSR marker-based dendrogram revealed five major and two minor groups. It showed that variation among the accessions was low, 10-20%. Heterozygosity was 0.52, total alleles produced were 410, and average allele per locus was 19.52. Six accessions, C3, C4, S5, W1, W3, and W5 fell in five different clusters in the SSR dendrogram and in six clusters in the morphomolecular based dendrogram. These accessions were noted for high capsule number per plant and seeds number per capsule and are recommended for consideration as potential parental lines for breeding programme for high yield.


2015 ◽  
Vol 193 ◽  
pp. 155-164 ◽  
Author(s):  
Kahraman Gürcan ◽  
Necip Öcal ◽  
Kadir Uğurtan Yılmaz ◽  
Shakir Ullah ◽  
Abdullah Erdoğan ◽  
...  

2015 ◽  
Vol 1 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Ahasanul Hoque ◽  
Shamsun Nahar Begum ◽  
Lutful Hassan

Diversity at molecular level among thirty rice genotypes, selected based on earliness and morphometric diversity was evaluated through five SSR markers associated with days to heading. Three primers viz., RM147, RM167 and RM215 showed polymorphism for growth duration related traits. A total of 17 alleles were detected among the 30 rice genotypes with an average of 5.66 alleles per locus. Polymorphism Information Content (PIC) ranged from 0.356 to 0.798 with an average of 0.543. A dendrogram based on total microsatellite polymorphism grouped 30 genotypes into four major clusters at 0.39 similarity coefficient differentiating early maturing genotypes from others. This information about the genetic diversity will be very useful for proper identification and selection of appropriate parents for future breeding programs, including gene mapping. The results also showed that microsatellite markers associated to genes or QTLs controlling growth duration properties are suitable tools for marker assisted selection (MAS) to select rice lines with short growth duration. DOI: http://dx.doi.org/10.3329/ralf.v1i1.22354 Res. Agric., Livest. Fish.1(1): 37-46, Dec 2014


2012 ◽  
Vol 03 (12) ◽  
pp. 1674-1681 ◽  
Author(s):  
Ram Lal Shrestha ◽  
Durga Datta Dhakal ◽  
Durga Mani Gautum ◽  
Krishna Prasad Paudyal ◽  
Sangita Shrestha

2019 ◽  
Author(s):  
Alemneh Mideksa Egu ◽  
Kifle Dagne ◽  
Kassahun Tesfaye ◽  
Xuebo Hu

Abstract BackgroundVernonia (Vernonia galamensis) is a potential novel industrial crop due to high demand for its natural epoxidised oil, which can be used for the manufacturing of oleochemicals such as paints, plastic formulations (polyvinyl chloride), and pharmaceutical products. This study is initiated for the systematic and intensive genetic diversity assessment of V. galamensis accessions by SSR molecular markers to minimize the existing research gaps, provide a clue for germplasm conservation and further research. ResultsTwenty SSR markers were used for genetic diversity analyses of 150 individual V. galamensis accessions representing 10 populations, from which a total of 79 bands were identified across the entire loci. All the loci used showed high polymorphism that ranged from 0.50 to 0.96, while the mean observed heterozygosity (Ho) was 0.15 across all the 20 markers evaluated. The molecular variance analysis (AMOVA) showed significant variations despite low differentiation among populations which accounted for only 11% of the total variations. Populations clustering showed that the dendrogram and principal coordinate’s analysis roughly classified the 150 accessions into four groups. However, the Bayesian model-based clustering (STRUCTURE) grouped into 6 (K = 6) major gene pools. These analyses showed accessions collected from the same region of origin did not often grouped entirely together within a given major groups. ConclusionsThe result suggested that the markers applied to ten populations, in which East Showa and East Harerghe revealed higher genetic diversity, signaled that these areas are the hotspots for in-situ conservation of V. galamensis. In addition, the values of SSR markers such as heterozygosity, Shannon‘s index, polymorphic information content, and population clusters are important baseline information for future V. galamensis cultivation, breeding and genetic resource conservation endeavors in Ethiopia.


Author(s):  
Nishi Mishra ◽  
M. K. Tripathi ◽  
Niraj Tripathi ◽  
Sushma Tiwari ◽  
Neha Gupta ◽  
...  

Aim: Soybean is well-thought-out to be a major crop owing to its significant involvement as vegetable oil and protein in human diet. However, inopportunely, its production has been melodramatically declined attributable to the commonness of drought related stress. Study Design: During the present study a total of 53 soybean genotypes were selected. For molecular diversity analysis as well as validation total 12 SSR markers were used. Molecular screening of soybean genotypes was done to determine the efficiency of available markers in genetic diversity analysis as well as their validation on the basis of their association with drought tolerance gene. Place and Duration of the Study: The present study was conducted at Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Gwalior, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, M.P., India during the year 2018 - 2019. Methodology: Template DNA of all 53 selected soybean genotypes extracted for molecular screening. The current investigation has been accomplished to validate the available SSR markers with their efficiency in genetic diversity analysis in a set of soybean genotypes. Results: Among applied drought tolerance gene-linked 12 SSR molecular markers, the highest genetic diversity (0.6629) was noticed in Satt520 while lowest (0.0370) was in Satt557 with an average of 0. 3746.While, the highest PIC value was 0.5887 prearranged by Satt520 and lowest 0.0363 by Satt557 with the mean worth of 0.3063. Conclusion: Dendrogram constructed on the basis of banding profile of employed markers was able to discriminate some putative drought tolerant genotypes i.e., JS97-52, JS95-60 from rest of the genotypes. The results of the present examination may donate towards enhancement of soybean genotypes to bread drought tolerant varieties.


2017 ◽  
Vol 74 (4) ◽  
pp. 615
Author(s):  
Nangsol D. Bhutia ◽  
A.K. Sureja ◽  
Lalit Arya ◽  
A.D. Munshi ◽  
Manjusha Verma

2012 ◽  
Vol 45 ◽  
pp. 57-65 ◽  
Author(s):  
Chatchawan Jantasuriyarat ◽  
Savitree Ritchuay ◽  
Pawat Pattarawat ◽  
Pattana Srifah Huehne ◽  
Sureeporn Kate-Ngam

2014 ◽  
Vol 61 (1) ◽  
pp. 267-272 ◽  
Author(s):  
Ronai Ferreira-Ramos ◽  
Klaus Alvaro Guerrieri Accoroni ◽  
Ariany Rossi ◽  
Marcela Corbo Guidugli ◽  
Moacyr Antonio Mestriner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document