scholarly journals Performance of Zero-till Wheat (Triticum aestivum L.) and Weed Species as Influenced by Residue and Weed Management Techniques in Rice based Cropping System

Author(s):  
Rakesh Kumar ◽  
U.P. Singh ◽  
Gaurav Mahajan
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


2016 ◽  
Vol 6 (3) ◽  
pp. 95-100
Author(s):  
Nadi Awwad Al Harbi

The aim of the present study was to investigate the potentials for utilization of Artemisia herba-alba and Anthemis arvensis shoot aqueous extract at different concentrations (1%, 3%, and 5%) to suppress the germination and growth of Panicum turgidum and Portulaca oleracea (weeds of crop fields) in Petri dish experiment. Results indicated that the degree of inhibition on seed germination and growth of the recipient species was largely dependent on the concentration of A. herba-alba and A.arvensis shoot aqueous extract. The aqueous extract of A.herba-alba showed the highest allelopathic effect on the germination of the seeds of P. turgidum, (10%,10% and 0%) while the effect of A. arvensis shoot aqueous extract was greater on the germination of the seeds P. oleracea (40%,0% and 0%). Percentage germination of the two selected crop species Triticum aestivum and Hordeum vulgare also de-creased as the A.herba-alba and A.arvensis shoot aqueous extract concentra-tion increased from 1% to 5% (90%,80% and 70%),(40%,40% and 20%). But the inhibition percentage was largely less than that of weed species. The results also showed that H.vulgare was more sensitive than T. aestivum and responds more strongly to the increase of concentration of A. herba-alba shoot aqueous extract . Results also showed that the radicle length of almost all tested species was more sensitive to allelochemicals from A.herba-alba and A.arvensis shoot aqueous extract than plumule length. Therefore, A. herba-alba and A. arvensis shoot aqueous extract may offer promises for their usefulness as a tool for weed management.


2014 ◽  
Vol 2 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Tika Bahadur Karki ◽  
Shrawan K. Sah ◽  
Resam B. Thapa ◽  
Andrew J. McDonald ◽  
Adam S. Davis ◽  
...  

Relay cropping of maize with fingermillet (maize/fingermillet) is the predominant cropping system for sustaining food security situation in the hilly regions of Nepal. In this region weed pressure severely reduces crop yields. Basic information on weed species composition, biomass production and their effect on crop yields and economics are lacking for this region. This information will be necessary to develop effective weed management strategies for the future. In light of this an empirical study was carried out in two representatives mid hill districts of Parbat and Baglung during summer season of 2010/2011 in Nepal. A total of 10 major weed species with densities of 172 in Parbat and 311 per 0.25m2 area in Baglung were observed. The highest percentage of both relative and absolute densities were recorded for Ageratum conyzoides in Parbat and Polygonum chinensis in Baglung. Weed infestation under farmers practice of crop management reduced the grain yield of maize by 1.985 Mt ha-1 (117%) in Baglung and 1.760 Mt ha-1 (108%) in Parbat. Similarly, in finger millet it was 0.489 Mt ha-1 (63%) in Baglung and 0.403 Mt ha-1 in Parbat. Similarly, the combined yield of both the crops was also significantly reduced by 79.3% and 61.7% in Baglung and Parbat respectively. Hence, weeds are directly affecting the crop performance in the region. Therefore, there is an urgent need to develop an alternative crop production system in the hills. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10790Int J Appl Sci Biotechnol, Vol. 2(3): 275-278  


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
OMBIR SINGH ◽  
MOHAN SINGH ◽  
ROHITASAV SINGH

A field experiment was conducted at the Crop Research Centre of GBPUA and T, Pantnagar, Udham Singh Nagar continuous two years to study the productivity, soil properties, and economics of wheat (Triticum aestivum L.) under different wheat establishment methods in main plots and seven weed management practices in sub plots, replicated thrice in a split plot design. Zero tilled wheat exhibited more number of spikes m-2 and more number of grains per spike was significantly higher than reduced and conventional tillage. The zero tilled wheat yielded 12.35 and 3.66 per cent higher over reduced and conventional tillage during Ist year and 11.99 and 3.09 per cent during IInd year. The bulk density of soil was higher under zero tillage than that of other tillage. The infiltration rate was significantly greater with ZT than RT and CT. The highest grain yield was obtained in two hand weedings done at 30 and 60 DAS and was at par with Isoproturon 1.0 kg ha-1 + Metsulfuron methyl 4 g ha-1 at 30 DAS and Clodinafop – Propargyl 60 g ha-1 at 30 DAS fb. Metsulfuron methyl 4 g ha-1 at 37 DAS.


2011 ◽  
Vol 62 (11) ◽  
pp. 1002 ◽  
Author(s):  
Jeff Werth ◽  
David Thornby ◽  
Steve Walker

Glyphosate resistance will have a major impact on current cropping practices in glyphosate-resistant cotton systems. A framework for a risk assessment for weed species and management practices used in cropping systems with glyphosate-resistant cotton will aid decision making for resistance management. We developed this framework and then assessed the biological characteristics of 65 species and management practices from 50 cotton growers. This enabled us to predict the species most likely to evolve resistance, and the situations in which resistance is most likely to occur. Species with the highest resistance risk were Brachiaria eruciformis, Conyza bonariensis, Urochloa panicoides, Chloris virgata, Sonchus oleraceus and Echinochloa colona. The summer fallow and non-irrigated glyphosate-resistant cotton were the highest risk phases in the cropping system. When weed species and management practices were combined, C. bonariensis in summer fallow and other winter crops were at very high risk. S. oleraceus had very high risk in summer and winter fallow, as did C. virgata and E. colona in summer fallow. This study enables growers to identify potential resistance risks in the species present and management practices used on their farm, which will to facilitate a more targeted weed management approach to prevent development of glyphosate resistance.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Jack Dekker

The story of agriculture is the story of weed interference. After millennia of weed control we still have weeds. This situation has led many growers to observe that “the weeds always win.” One of the most important reasons weeds are so successful is their biodiversity. Biodiversity is an inevitable consequence of the struggle an individual weed species undergoes in the presence of neighbors, and by occupying a physical space in an agroecosystem. Weeds have evolved in response to cropping system practices by adapting and occupying niches left available in agroecosystems. Forces created by our cropping practices over evolutionary time have led to the weed diversity we observe today. Diversity underlies weed management in several important ways. A plant experiences diversity among its neighbors in at least five different ways. Weeds have adapted to selection in agroecosystems in several ways: (1) genetic variants within a species; (2) somatic polymorphism of plant parts; (3) success in diverse habitat microsites; (4) temporal adaptations within the community; and (5) floristic diversity of a community at higher levels than the species. Herein, weed diversity is discussed in this broader context, in terms of population behaviors that emerge as a consequence of the activities of individual components at lower levels of organization. Diversity is also discussed in terms of its implications for weed management. The potential exists to develop management strategies based on differences in weed and crop diversity. These strategies might be developed by characterization of weedy genetic and phenotypic diversity; enhancement of crop, cropping system, and agroecosystem diversity; and characterization of the spatial distribution of weed populations.


Sign in / Sign up

Export Citation Format

Share Document