scholarly journals Salt Tolerant Rhizobacteria from Coastal Region of Bangladesh Portrayed the Potential for Plant Growth Promotion

Author(s):  
Md. Shoaib Arifin ◽  
Md. Shafiul Islam Rion ◽  
Atiqur Rahman ◽  
H. M. Zakir ◽  
Quazi Forhad Quadir

Plant growth-promoting rhizobacteria can effectively reduce the severity of different abiotic stresses like water stress, temperature stress, salt stress, etc. on plant growth and development. The study aimed at isolating salt-tolerant rhizobacteria followed by their morphological, biochemical and plant growth promotion traits evaluation. Sixteen root samples of nine different plant species were collected from two locations of Patuakhali, a coastal southern district of Bangladesh. Thirty rhizobacteria were isolated, fifteen from each location, to assess their halotolerance and plant growth promoting potential. The isolated rhizobacteria were subjected to morphological (viz. shape, colour and elevation), biochemical (viz. Gram reaction, catalase test and HCN production) and growth-promoting traits [viz. phosphate solubilizing ability, salt tolerance, indole-3-acetic acid (IAA) production, and N2-fixation] characterization. Twenty-eight isolates were Gram positive, 27 were catalase positive, and nine showed varying degrees of phosphate solubilization on National Botanical Research Institute of Phosphate (NBRIP) medium. Isolate PWB5 showed the highest phosphate solubilizing index (PSI = 3.83±0.098) on the 6th day. To screen salt-tolerant rhizobacteria, the isolates were cultured in NBA media containing different (0%, 2.5%, 5%, 7.5%, 10%, 12%, 15%) NaCl concentrations. Isolate PWB12 and PWB13 grew at 15% NaCl concentration. Eleven isolates exhibited IAA producing ability on Winogradsky medium amended with L-tryptophan among which four (PMB13, PMB14, PMB15 and PWB6) were strong IAA producers. Twenty-seven isolates were potential N2-fixer and among them, 20 were highly efficient, but none of the isolates was HCN producer. The rhizobacteria isolated in the current research work showed some potential plant growth-promoting traits which seem applicable for crop production, especially, under salt stress condition.

2018 ◽  
Vol 3 (2) ◽  
pp. 105
Author(s):  
Diskit Dolkar ◽  
Phuntsog Dolkar ◽  
Tsering Stobdan ◽  
Anand K Katiyar

<p><em>Pseudomonas simiae</em> isolated from Seabuckthorn rhizosphere solubilized insoluble phosphate at 4-40ºC, pH 4-12 and in presence of 1-5% salt concentration. The optimum condition was observed at 28ºC, pH 6 and devoid of any salt stress. Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> was solubilized to a great extent than FePO<sub>4</sub> and AlPO<sub>4</sub>. The isolate possess plant growth promoting attributes such as IAA (32 mg l<sup>-1</sup>), siderophore (78%) and HCN (0.1 OD at A<sub>625</sub>) production. Seed bacterization resulted in 30% and 51% enhanced shoot and root length, respectively in tomato seedling. Pot experiments revealed enhanced plant growth in <em>P. simiae</em> treated plants in both green shade net and open field conditions. Fruit yield was 9.8% and 19.8% higher over control in open and shade net condition, respectively. <strong></strong></p>


2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Jin-Ju Jeong ◽  
Mee Kyung Sang ◽  
Duleepa Pathiraja ◽  
Byeonghyeok Park ◽  
In-Geol Choi ◽  
...  

Chryseobacterium sp. strain ISE14 is a phosphate-solubilizing endophytic bacterium that exhibits plant growth promotion and biocontrol activities against Phytophthora blight and anthracnose on pepper.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Christian Suarez ◽  
Stefan Ratering ◽  
Torsten Hain ◽  
Moritz Fritzenwanker ◽  
Alexander Goesmann ◽  
...  

Strain E19T described as Hartmannibacter diazotrophicus gen. nov. sp. nov. was isolated from the rhizosphere of Plantago winteri from a natural salt meadow in a nature protection area. Strain E19T is a plant growth-promoting rhizobacterium able to colonize the rhizosphere of barley and to promote its growth only under salt stress conditions. To gain insights into the genetic bases of plant growth promotion and its lifestyle at the rhizosphere under salty conditions, we determined the complete genome sequence using two complementary sequencing platforms (Ilumina MiSeq and PacBio RSII). The E19T genome comprises one circular chromosome and one plasmid containing several genes involved in salt adaptation and genes related to plant growth-promoting traits under salt stress. Based on previous experiments, ACC deaminase activity was identified as a main mechanism of E19T to promote plant growth under salt stress. Interestingly, no genes classically reported to encode for ACC deaminase activity are present. In general, the E19T genome provides information to confirm, discover, and better understand many of its previously evaluated traits involved in plant growth promotion under salt stress. Furthermore, the complete E19T genome sequence helps to define its previously reported unclear 16S rRNA gene-based phylogenetic affiliation. Hartmannibacter forms a distinct subcluster with genera Methylobrevis, Pleomorphomonas, Oharaeibacter, and Mongoliimonas subclustered with genera belonging to Rhizobiales.


2021 ◽  
Vol 11 (5) ◽  
pp. 2233
Author(s):  
Maria J. Ferreira ◽  
Angela Cunha ◽  
Sandro Figueiredo ◽  
Pedro Faustino ◽  
Carla Patinha ◽  
...  

Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes represents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia ramosissima is one of the least-studied species in terms of microbiome composition and the effect of sediment properties on the diversity of plant-growth promoting bacteria associated with the roots. In this work, we aimed at isolating and characterizing halotolerant bacteria associated with the rhizosphere and root tissues of S. ramosissima, envisaging their application in saline agriculture. Endophytic and rhizosphere bacteria were isolated from wild and crop cultivated plants, growing in different estuarine conditions. Isolates were identified based on 16S rRNA sequences and screened for plant-growth promotion traits. The subsets of isolates from different sampling sites were very different in terms of composition but consistent in terms of the plant-growth promoting traits represented. Bacillus was the most represented genus and expressed the wider range of extracellular enzymatic activities. Halotolerant strains of Salinicola, Pseudomonas, Oceanobacillus, Halomonas, Providencia, Bacillus, Psychrobacter and Brevibacterium also exhibited several plant-growth promotion traits (e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization). Considering the taxonomic diversity and the plant-growth promotion potential of the isolates, the collection represents a valuable resource that can be used to optimize the crop cultivation of Salicornia under different environmental conditions and for the attenuation of salt stress in non-halophytes, considering the global threat of arable soil salinization.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


Sign in / Sign up

Export Citation Format

Share Document