scholarly journals Modelling and Dynamic Response Characteristics Study of a PAM Bionic Kangaroo Leg Suspension

2020 ◽  
Vol 25 (2) ◽  
pp. 254-265
Author(s):  
Yong Song ◽  
Jiahao Shi ◽  
Zhanlong Li ◽  
Jinyi Lian ◽  
Qinglu Shi ◽  
...  

A PAM (pneumatic artificial muscle) bionic kangaroo leg suspension is proposed on the basis of a kangaroo leg structure evolved from long-term hopping; the modelling and characteristics research are conducted to pursue a high-performance vehicle suspension system. Based on the PAM and kangaroo leg bone proportions, the bionic suspension structure is constructed by analysing and refining the kangaroo leg structure and functions. The dynamic equations are derived by the Lagrange's Equations considering the rods system features and an Adams simulation model is built up to study the damping performance and parameter characteristics of the suspension. Moreover, a co-simulation of Adams and Matlab is performed under fuzzy control and PID control. The dynamic response characteristics of the suspension is simulated and analysed under the passive and active modes in the time and frequency domains. The result indicates that the vibration and shock of the vehicle body can be reduced effectively by the proposed suspension in passive, fuzzy control and PID control modes; compared with the passive mode, the damping performance of the suspension is better under the active control. The fuzzy control and the PID control are effective to reduce the suspension transmissibility, especially in the medium frequency ranges, and the two control effects are better than that of the passive mode in most frequency bands. The study result of this paper can provide a reference for the research and development of high-performance bionic suspension.

2019 ◽  
Vol 12 (4) ◽  
pp. 357-366
Author(s):  
Yong Song ◽  
Shichuang Liu ◽  
Jiangxuan Che ◽  
Jinyi Lian ◽  
Zhanlong Li ◽  
...  

Background: Vehicles generally travel on different road conditions, and withstand strong shock and vibration. In order to reduce or isolate the strong shock and vibration, it is necessary to propose and develop a high-performance vehicle suspension system. Objective: This study aims to report a pneumatic artificial muscle bionic kangaroo leg suspension to improve the comfort performance of vehicle suspension system. Methods: In summarizing the existing vehicle suspension systems and analyzing their advantages and disadvantages, this paper introduces a new patent of vehicle suspension system based on the excellent damping and buffering performance of kangaroo leg, A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension. According to the biomimetic principle, the pneumatic artificial muscles bionic kangaroo leg suspension with equal bone ratio is constructed on the basis of the kangaroo leg crural index, and two working modes (passive and active modes) are designed for the suspension. Moreover, the working principle of the suspension system is introduced, and the rod system equations for the suspension structure are built up. The characteristic simulation model of this bionic suspension is established in Adams, and the vertical performance is analysed. Results: It is found that the largest deformation happens in the bionic heel spring and the largest angle change occurs in the bionic ankle joint under impulse road excitation, which is similar to the dynamic characteristics of kangaroo leg. Furthermore, the dynamic displacement and the acceleration of the vehicle body are both sharply reduced. Conclusion: The simulation results show that the comfort performance of this bionic suspension is excellent under the impulse road excitation, which indicates the bionic suspension structure is feasible and reasonable to be applied to vehicle suspensions.


1984 ◽  
Vol 16 (1-2) ◽  
pp. 119-122
Author(s):  
Y. Morit ◽  
K. Segi ◽  
M. Samejima ◽  
T. Nakamura

1995 ◽  
Vol 6 (5) ◽  
pp. 465-472 ◽  
Author(s):  
C. E. M. Sefton ◽  
P. G. Whitehead ◽  
A. Eatherall ◽  
I. G. Littlewood ◽  
A. J. Jakeman

2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


Sign in / Sign up

Export Citation Format

Share Document