scholarly journals Study on dynamic response characteristics of high and steep layered rock mass slopes using a modal analysis method

Author(s):  
D Q Song ◽  
J Huang ◽  
X L Liu ◽  
E Z Wang ◽  
J M Zhang
2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


2021 ◽  
Vol 11 (15) ◽  
pp. 7068
Author(s):  
Danqing Song ◽  
Zhuo Chen ◽  
Lihu Dong ◽  
Wencheng Zhu

In order to systematically reveal the dynamic response characteristics of rock mass slopes subject to seismic excitation, time-domain and frequency-domain analyses are used to investigate the dynamic response of a bedded rock slope from multiple perspectives, using the two-dimensional numerical dynamic analyses. Based on the numerical simulation results, the influence of the weak bedded structural planes on the propagation characteristics of seismic waves in the slope is analyzed. The time-domain analysis suggests that the topographic and geological conditions have an influence on the dynamic response of the slope. The effects of ground motion direction on the dynamic response characteristics of the slope are identified. In addition, according to the frequency-domain analysis, the impacts of slope surface, elevation, and structural plane on the seismic response characteristics of the slope are also clarified. The intrinsic characteristics of the slope are investigated by using Fourier spectral analysis and modal analysis, and the deformation response characteristics of the slope are clarified. The relationship between different natural frequencies of the slope, the predominant frequency of the seismic wave, and the dynamic response characteristics of the slope is discussed. Moreover, the dynamic failure mechanism of the slope is analyzed. This work provides a reference for the seismic analysis of this type of slope.


2021 ◽  
Author(s):  
Danqing Song ◽  
zhuo chen ◽  
Lihu Dong ◽  
Han Du

Abstract The two-dimensional dynamic analysis was used to study the dynamic response characteristics of a toppling rock slope based on the time-frequency joint analysis method using the FLAC (Fast Lagrangian Analysis of Continua). Two-dimensional dynamic analyses were carried out on two numerical models. The results of the numerical dynamic analyses show that the toppling slope has an topographic and geological dynamic amplification effect. There are an elevation and surface dynamic amplification effect in the toppling slope. The impacts of the structural planes in the models on their wave propagation characteristics and magnification effect were discussed. Directions of ground motion have impacts on the dynamic response of the models. Based on the frequency-domain analysis, the relationship between the frequency of waves and the dynamic response of the models was further studied. The geological structure have a great effect on the high-frequency components of waves. The analyses of marginal spectrum show that the energy mainly concentrated in the frequency band of seismic wave (7-10 Hz). Moreover, the seismic failure mechanism of the toppling rock slope was discussed. Geological structure determines the seismic failure mode of the slope. Cracks initiate in the top toppling plane, and the surface slope is damaged firstly under earthquake excitation; with the increase of seismic loading, a large-scale slip mass further forms gradually from the upper to the lower slope body.


2015 ◽  
Vol 744-746 ◽  
pp. 632-640
Author(s):  
Hong Gang Wu ◽  
Tao Yang ◽  
Zhi Wen Xue ◽  
Hui Min Ma ◽  
Hong Li Zhang ◽  
...  

It is found from the earthquake statistics in recent decades that the vertical seismic oscillation of near field was strong. And even the recorded peak value of vertical seismic oscillation was far more than the peak value of horizontal seismic oscillation in some sites. In order to study the characteristics of vertical and horizontal seismic oscillation acceleration acted on the slope. Calculate the slope earthquake dynamic response characteristics under the horizontal and vertical seismic acceleration by the FLAC3D numerical analysis method. Compared the acceleration, velocity and the displacement amplification coefficient under two kinds of excitation. Analyzed the influence on seismic stability by the acceleration of different direction.


1984 ◽  
Vol 16 (1-2) ◽  
pp. 119-122
Author(s):  
Y. Morit ◽  
K. Segi ◽  
M. Samejima ◽  
T. Nakamura

1995 ◽  
Vol 6 (5) ◽  
pp. 465-472 ◽  
Author(s):  
C. E. M. Sefton ◽  
P. G. Whitehead ◽  
A. Eatherall ◽  
I. G. Littlewood ◽  
A. J. Jakeman

2011 ◽  
Vol 90-93 ◽  
pp. 2363-2371
Author(s):  
Bin Wei Xia ◽  
Ke Hu ◽  
Yi Yu Lu ◽  
Dan Li ◽  
Zu Yong Zhou

Physical models of layered rock mass with different dip angles are built by physical model test in accordance with the bias failure characteristics of surrounding rocks of layered rock mass in Gonghe Tunnel. Bias failure characteristics of surrounding rocks in thin-layered rock mass and influences of layered rock mass dip angle on stability of tunnel are studied. The research results show that failure characteristics of physical models generally coincide with those of surrounding rocks monitored from the tunnel site. The failure regions of surrounding rock perpendicular to the stratification planes are obviously larger than those parallel to. The stress distributions and failure characteristics in the surrounding rocks are similar to each physical model of different dip angles. The stress distributions and failure regions are all elliptic in shape, in which the major axis is in the direction perpendicular to the stratification planes while the minor axis is parallel to them. As a result, obvious bias failure of surrounding rocks has gradually formed. The physical model tests provide reliable basis for theoretical analysis on the failure mechanism of deep-buried layered rock mass.


Sign in / Sign up

Export Citation Format

Share Document